
© Internet Initiative Japan Inc.

Development of Remote Access Services
—Evolution of ID Gateway

*1 “Launch of ID Gateway Service,” iij.ad.jp, IIJ (October 2, 1998) (https://www.iij.ad.jp/news/pressrelease/1998/pdf/gateway.pdf, in Japanese).

2.1 Introduction
At the end of September 2024, the ID Gateway Service

IIJ had been providing for around 26 years was finally

discontinued. Having begun in December 1998*1, it was

one of the longest-running services in IIJ’s history.

The ID Gateway Service was a service that provided remote

access, a technology for connecting to computers in remote

locations and something that is essential for the now

widespread practice of remote work. VPN technology is

now considered essential for remote access, but the ID

Gateway Service did not use VPN when it was first released

in 1998. Even site-to-site VPNs were still only just starting to

gain traction at the time, and while there were client-side

VPN implementations, they could hardly have been called

practical. Here, we look back on developments from this

era through to the present, where VPN has become an

essential technology in our society, alongside the history

of IIJ’s ID Gateway Service.

2.2 The Early Days of Remote Access Services
Around the time IIJ launched the ID Gateway Service in

1998, remote access meant installing network devices for

dial-up access, such as the Ascend MAX, within an orga-

nization, dialing into it, and establishing an IP connection

via PPP. The key with these dial-up routers was that they

needed to provide internal connectivity, because if you

simply wanted to connect to the Internet, you could connect

to an ISP. At the time, however, such devices could not

implement access controls such as firewalls, and there

were apparently cases in which they connected to internal

networks with virtually no restrictions.

IIJ, meanwhile, had been recommending to users that they

keep their internal networks separate from the Internet, with

firewalls at the boundary. Remote access that provided a

back door around that separation was a vulnerability in and

of itself, and IIJ believed that when providing remote access

as a service, it should be incorporated within the same

access control policy as firewalls. Moreover, instead of

putting dial-up routers on the user’s network, the system was

designed to use IIJ’s dial-up service. And thus ID Gateway

1.0 was developed to use existing Internet connectivity as

the means for remote access while requiring firewall-like

access control for access to internal networks.

2.3 ID Gateway 1.0
ID Gateway 1.0 was developed based on an application-level

gateway firewall. The base OS was BSD/OS 3.1. With an

application-level gateway firewall, a proxy intercepts all

communications passing through the firewall and only relays

subsequent communications if permitted according to access

control rules. Since communications are relayed at the

application level, protocols such as HTTP and SMTP are

interpreted before the communications are forwarded. The

access control portion of this application-level gateway

firewall was extended to allow or deny communications

for individual destinations based on the PPP account user-

name (Figure 1).

We anticipated that it would often be necessary to grant

permission for each specific destination rather than using

a broad rule to allow access to the entire network simply

because a user had been authenticated. This was because

it had been pointed out through design reviews and internal

beta testing that it would be crucial to protect not only

connecting users but also the services within organizations

to which communications were being directed. The team

therefore aimed to implement fine-grained access control.

Let’s examine the details a little more closely. As indicated

in the lower left of Figure 2, when a user access request

comes in, it is passed through the operating system to

the relay program (proxy). At this point, the user’s source

IP address, destination IP address, and port number are

passed to the relay program, which then queries the ID

authentication daemon to determine whether the communi-

cation is permitted under the access control rules. Since

2. Focused Research

14

Vol. 66Jun.2025

2. Focused Research

© Internet Initiative Japan Inc.

access control rules are in Link-ID form (PPP account user

ID), the ID authentication daemon needs to convert the source

IP address to a Link-ID. If a previous query result exists in the

cache, the ID authentication daemon immediately completes

the conversion from source IP address to Link-ID using

the cached information. If no such result exists in the

cache, it sends a query to what is called IIJ’s ID server.

Communication with the ID authentication daemon and

the ID server uses a protocol developed by IIJ called the

Link-ID protocol.

Once the ID authentication daemon obtains the Link-ID,

it determines whether the communication is permitted for

the resolved user by assessing the access control rules

and returns an allow or deny value to the relay program.

This ensured that remote access was only allowed when

permitted under the access control rules.

2.4 ID Gateway 2.0
With ID Gateway 2.0, released in September 2000, we

overhauled the configuration user interface from a console

application to a graphical user interface (GUI) called ID

Gateway Policy Manager. After extensive discussion about

how to make the access control rules more intuitive to

configure, we eventually designed a unique spreadsheet-like

interface for the access control rule panel in which users

Allow/deny
ID authentication
Access control

To ID server

User access To service host

ID Gateway　

Relay program

Operating system

Access control rules

ID authentication daemon

Cache

Obtains Link-ID

Client host

IIJ Network Operations Center

Dial-up server ID server

ID Gateway

Service host

Link-ID queryAllow or deny based on Link-ID and destination

Telephone network

PPP tunnel

Figure 1: Overall Structure of ID Gateway 1.0Figure 1: Overall Structure of ID Gateway 1.0

Figure 2: ID Gateway 1.0’s Access Control

1515

© Internet Initiative Japan Inc.

*2 KAME Project (https://www.kame.net/index.html).

could mark cells with ○ or ×, as shown in Figure 3. We also

switched to NetBSD 1.4 for the base OS.

2.5 ID Gateway 3.0
ID Gateway 3.0, released in April 2002, provided support

for VPN connections based on PPPs such as L2TP/IPsec

and PPTP. At the time, however, we had to overcome

several challenges to make this happen.

We first needed to implement tunneling protocols L2TP and

PPTP. Existing open-source implementations at the time used

a process-forking model that used one process per tunnel,

and at the anticipated scale of the ID Gateway Service,

this would have involved hundreds of processes, which

would have been impractical due to memory constraints.

We had implemented the daemons on ID Gateway using

an event-driven model since version 1.0, and the tunneling

protocols also needed to be implemented with an event-

driven model. We did this from scratch using C++.

Next, for the IPsec part of L2TP/IPsec, we were able

to use the IKE and IPsec implementations from WIDE’s

KAME project*2, which had been incorporated into

NetBSD. There was one problem, however. To use IPsec

through NAT, you need to implement IPsec NAT-T, but the

version incorporated into NetBSD 1.4 did not have this.

Unless IPsec NAT-T was implemented, the UDP checksums

would not match, and even if we were to bypass that, the

problem was that only one host behind NAT would be able

to connect. On the ID Gateway Service, we called this the

“first come, only served” problem. For ID Gateway 3.0, we

decided to accept this “first come, only served” problem

as a given restriction and only solve the UDP checksum

mismatch issue. Here, we decided to skip UDP checksum

verification since ESP’s HMAC is already used to perform

a check on incoming transmissions. For outgoing trans-

missions, we set the optional UDP checksum field to 0,

meaning it would not be used, so that checksum verifica-

tion would also be skipped on the peer host.

Issues can potentially arise with PPTP when traversing

NAT. PPTP uses TCP for control and GRE for transmitting

data. There are no NAT traversal issues with the control

portion since it uses TCP, but issues similar to those

with L2TP/IPsec can arise with the GRE-based data

transmissions. But implementations that used the Call-ID

Figure 3: ID Gateway 2.0’s Policy Manager

16

Vol. 66Jun.2025

2. Focused Research

© Internet Initiative Japan Inc.

*3 An open-source PPP implementation developed by Toshiharu Ohno and others at IIJ. It was widely used from the late 1990s to the early 2000s, particularly among BSD users.

in the GRE header for NAT masquerading had started to

become widespread, particularly in consumer routers.

We thus expected the “first come, only served” problem

to be less of an issue with PPTP than with L2TP/IPsec.

Additionally, PPTP effectively requires MPPE for packet

encryption, and MPPE uses the proprietary encryption

algorithm RC4. We therefore obtained a license to use

RC4 from RSA Data Security.

For the PPP implementation, we decided to use FreeBSD’s

ppp, which was based on iij-ppp*3 and had been extended

with Multi-PPP to enable multiple PPP connections over

multiple lines, allowing a single process to act as the end-

point for multiple PPP connections, plus it had originally

been developed by IIJ.

We also had to figure out how to handle VPN authentica-

tion. For a typical VPN service, you would first connect

to the user directory service for authentication. But with

ID Gateway up to version 2.0, users had been using di-

al-up connections, so existing users were already on IIJ’s

dial-up service, and we had issued PPP accounts to

connecting users with access control rules being configured

for those accounts. We realized that using the same

accounts for VPN authentication would make it possible

to use various existing components as well, so that is how

we implemented it. Authentication requests from the PPP

daemon on the ID Gateway were proxied by the ID authen-

tication daemon and authenticated by the RADIUS server

on IIJ’s ID server. This allowed users to configure a single

PPP account in the same way both for dial-up and for

VPN entries via L2TP/IPsec and PPTP. As Figure 4 shows,

we were also able to implement the access control mecha-

nism in almost the same manner as before. Because we

designed the system so that VPN would be handled in the

same way as conventional dial-up, within the ID Gateway

Service we called this virtual dial-up (VDIP) and referred

to conventional dial-up as real dial-up.

Figure 4: Dial-up Method and Access Control

Physical dial-up only Physical dial-up + virtual dial-up

Allow/deny
ID authentication
Access control

To ID server

User access To service host　

ID Gateway

Relay program

Operating system

Access control rules

ID authentication daemon

Cache

Obtains Link-ID

Allow/deny
ID authentication
Access control

To ID server

User access To service host

ID Gateway

Relay program

PPP daemon

Operating system

Access control rules

ID authentication daemon

Cache

Obtains Link-ID

This is the only difference

1717

© Internet Initiative Japan Inc.

*4 SEIL (https://www.seil.jp/, in Japanese).

*5 src/usr.sbin/npppd/, github.com, GitHub (https://github.com/openbsd/src/tree/8b2d863473/usr.sbin/npppd/).

*6 src/lib/libradius/, github.com, GitHub (https://github.com/openbsd/src/tree/8b2d863473/lib/libradius/).

For ID Gateway 4.02, we also rewrote the implementations of

the L2TP/IPsec and PPTP server functions from scratch

and created a new daemon. In the original implementation,

the VPN tunnel processing code was written in C++ rather

than C, which caused problems when porting to embedded

environments like the SEIL series*4 (IIJ’s series of proprietary

high-performance routers for enterprises). The PPP portion had

also previously been a separate program, and we simplified

this by rewriting it with the bare minimum functionality

and incorporated it into the same program as the VPN,

improving performance and maintainability. This program

was npppd*5, which would later be incorporated into

OpenBSD. Further, the RADIUS portion repurposed code

originally used in the ID server, and this served as the

prototype for what is now the OpenBSD RADIUS library*6.

2.7 ID Gateway 5
In ID Gateway 5.00, released in March 2008, we added

a client authentication feature. This provided additional

authentication on top of the initial VPN connection

authentication, making it equivalent to what is now called

multi-factor authentication. This feature addressed user

requests for the ability to restrict the range of devices able

to connect and for contingencies to mitigate the impact of

password leaks. We extended the ID authentication daemon

and relay program to implement the terminal authentication

feature. After a VPN connection was established and up

until the point that terminal authentication was completed,

the ID Gateway terminal authentication feature restricted

access to DNS and authentication pages only, and once

terminal authentication was successful, it would switch

to the full set of access control rules. This method of

2.6 ID Gateway 4
With ID Gateway 4.00, released in July 2005, we added

an authentication server integration feature to allow the

use of a RADIUS or LDAP server from the user’s net-

work—which could be an Active Directory environment,

for example—as the virtual dial-up authentication server.

We also overhauled the reporting system and added a rule

viewer function.

In ID Gateway 4.02, released in April 2006, we implemented

a new VPN protocol called SSL Dial-up (SSLDIP). As noted

earlier, L2TP/IPsec and PPTP can experience problems when

used across NAT. And these protocols are sometimes com-

pletely unusable when only a limited range of ports (e.g.,

HTTP, HTTPS, DNS) can be used, such as from within

restricted organizational networks or networks available

at overseas hotels. Meanwhile, SSL-VPN products were

beginning to appear on the market, and since SSL-VPN

products using SSL for transport are entirely unaffected

by these problems, we knew we had to implement equiv-

alent functionality in ID Gateway.

We designed SSLDIP to use SSL (now TLS) as the transport

layer and create an L2 tunnel between the client and ID

Gateway, with PPTP running on top of that. The aim was

to use PPP as the common base for the tunnels that were

ultimately created, allowing us to otherwise use the same

mechanisms as before, including for authentication and

access control. For the L2 tunnel, we decided to use the

open-source OpenVPN, and we developed a Windows client

to make configuring the system and managing connections

easy.

18

Vol. 66Jun.2025

2. Focused Research

© Internet Initiative Japan Inc.

access restriction is equivalent to what is now called a

captive portal. The authentication mechanism worked by

redirecting web access from the client to an authentication

page. An applet on the authentication page would send

the client device’s MAC address to the ID Gateway,

which would then check it against the list of registered

MAC addresses stored in the ID Gateway’s database to

verify that the connection was coming from a legitimate

device owned by an authorized VPN user.

In addition, to enable hot standby, we added VRRP

functionality by porting it from SEIL. We also added support

for EAP authentication in the authentication server integration

feature.

With ID Gateway 5.02, released in December 2009, we

brought the operating system source code and the SEIL/X

series source code together to unify the codebase. This

enabled IPsec NAT-T and thus resolved the long-standing

issue of not being able to accommodate multiple L2TP/

IPsec users behind NAT. We switched to NetBSD 3.1 for

the base OS.

2.8 ID Gateway 6
ID Gateway 6.00, released in November 2011, added support

for SSTP as a new tunneling protocol. SSTP is a protocol

developed by Microsoft that operates over TLS and tunnels

PPP frames in a manner similar to L2TP/IPsec and the like.

As it is TLS-based, there are no issues connecting from

behind NAT, and since the client is included as standard

in Windows, we did not need to distribute our own client.

And because it is PPP-based, we were able to reuse the

existing authentication and access control components as

is. Although SSTP is an open protocol, we needed to obtain

a license from Microsoft for commercial use.

2.9 The End of ID Gateway Development and
 Challenges Faced
The initial technical challenges in terms of connecting from

behind NAT that we faced when we launched the virtual

dial-up service were resolved with the addition of support

for IPsec NAT-T in version 5.02 and SSTP in version 6.00.

Load per user was continuing to increase year by year,

however, meaning we could no longer achieve the desired

performance on a single gateway.

The first conceivable factor here is that ID Gateway

was, from the outset, application gateway software, not a

router. All communications were relayed at the application

layer, and it basically did not perform IP forwarding. This

inevitably results in higher loads compared with IP-level

forwarding. What we should have had was a mechanism for

offloading to IP-level forwarding on a case-by-case basis.

Another factor was that the relay program providing the

application gateway functionality was designed to run as

a single process, so it was unable to make use of multiple

CPUs even when they were present, and it had issues

with multi-core support.

The final factor to consider is the base OS kernel. The

base OS of the final version of ID Gateway is NetBSD 3.1,

but work on multi-core support for its network stack had

not yet started, and thus similar to the relay program, it

1919

© Internet Initiative Japan Inc.

Tornado is IIJ’s in-house gateway software integrating net-

work-related software functions within IIJ, developed based

on OpenBSD. We needed the base OS for the successor

to ID Gateway to provide enterprise firewall-level packet

filtering capabilities and the ability to implement kernel

extensions for transparent proxies, and OpenBSD met

all these requirements at the time development began in

2011. Moreover, from the outset it also provided features we

had wanted for ID Gateway, such as socket splicing, which

moves the work of relaying packets from the application

level back into the kernel, and VRF for policy routing and

the like. It also incorporated the npppd daemon from ID

Gateway.

In Tornado, we replaced the relay program with a new

multi-core compatible daemon. And in the access control

rules, we made it possible to use a single configuration

item to switch between application-level relaying and IP-

level forwarding through packet filtering.

A major difference between ID Gateway and Tornado is

that while ID Gateway was software exclusively for the

ID Gateway service, Tornado is general-purpose software.

It is designed so that service-specific functions that can-

not be standardized are developed as optional packages.

was unable to use multiple CPUs even when present, and

it had issues with multi-core support.

These seemingly separate issues are in fact nothing more

than the manifestation of software obsolescence. Modern

software continues to evolve across the globe via the

Internet, and systems are bound to become outdated if

neglected. Looking back, we now realize that the issues with

the ID Gateway software stem from us not having taken

steps to address this inevitable software obsolescence.

We determined that extending ID Gateway to resolve

these issues would be difficult for various reasons, and so

we decided to discontinue development of the ID Gateway

software and pass the torch to its successor service, IIJ

GIO Remote Access Service, along with Tornado, a new

gateway OS developed at IIJ.

2.10 IIJ GIO Remote Access Service and Tornado
In February 2013, we launched a new remote access service

called IIJ GIO Remote Access Service (GAM). GAM is a

cloud-based service with the VPN gateway running in IIJ’s

cloud. For the VPN gateway, we use Tornado, a system

newly developed at IIJ to replace ID Gateway.

To ID server

User-ID data

Authentication/accounting

Authentication/accounting

npppd

iked

ID authentication daemon

radiusd

IPCP

To customer’s authentication serverRADIUS proxy

VDIP authentication

Manages IP address allocations

Figure 5: Overview of Connections Using IKEv2

20

Vol. 66Jun.2025

2. Focused Research

© Internet Initiative Japan Inc.

Service-specific features are subject to a relatively high

amount of churn, with new features constantly being de-

sired while old ones become obsolete. We designed the

system so that such features could be added and removed

easily.

In December 2024, GAM added support for connections

using the new VPN protocol IKEv2. As IKEv2 is not a PPP-

based protocol, the authentication and access control

mechanisms used by other protocols could not be used

with the IKEv2 daemon available in OpenBSD at that time.

Creating a system entirely separate from the PPP-based

one to solve this problem would have meant two differ-

ent methods had to be managed and maintained. With

Tornado, we decided to standardize by adding RADIUS

authentication and accounting capabilities to the IKEv2

daemon. We went with a unified authentication system in

RADIUS and, as shown in Figure 5, implemented the system

such that a local RADIUS daemon centrally manages the

allocation of IP addresses to VPNs, and the access control

mechanism thus works in the same way for both PPP-

based VPNs and IKEv2.

Internally, we use Tornado version 4.5, which is based on

an OpenBSD version released about a year ago, so we are

using a relatively recent version. Having learnt from the ID

Gateway experience, we now update the base OS version

regularly as part of continuous integration, so we no longer

end up being stuck with stale versions of the base OS.

2.11 Conclusion
Looking back, ID Gateway was never just a remote access

service. It provided security features whereby users were

authenticated via PPP accounts and only able to engage

in the communications permitted under the access control

rules for their authenticated IDs. With ID Gateway 5, we

also added device-level authentication. These features

constitute what is now called a Zero Trust Architecture

(ZTA).

The history of ID Gateway and the subsequent transition to

IIJ GIO Remote Access Service is also a story of in-house

software development at IIJ. Tornado is IIJ’s current infra-

structure software and successor to ID Gateway. Looking

forward, we will continue to work with new technologies

and strive to provide even better services that address the

changing needs of users as well as changes in the broader

landscape.

Masahiko Yasuoka

System Development Section 1, Applied Technology Development Department, System Development Division, Network Services Business Unit, IIJ
Mr. Yasuoka joined IIJ in 1998. After developing ID Gateway and other systems, he proposed and developed Tornado, a gateway OS
integrating the functionality of IIJ’s internal software. He continues to develop and maintain this system today.

2121

	2.	Focused Research
	2.1	Introduction
	2.2	The Early Days of Remote Access Services
	2.3	ID Gateway 1.0
	2.4	ID Gateway 2.0
	2.5	ID Gateway 3.0
	2.6	ID Gateway 4
	2.7	ID Gateway 5
	2.8	ID Gateway 6
	2.9	The End of ID Gateway Development and 		Challenges Faced
	2.10	IIJ GIO Remote Access Service and Tornado
	2.11	Conclusion

