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Deep-Learning for Log Analysis 
to Detect Malicious Communications

*1 Deep Impact: Recognizing Unknown Malicious Activities from Zero Knowledge (https://www.blackhat.com/eu-18/briefings/schedule/index.html#deep-impact-rec-

ognizing-unknown-malicious-activities-from-zero-knowledge-12276).

*2 For example, IoCs may be obtained from host names discovered via anomaly detection or analysis of suspicious devices reported by users, as well as from external 

reports, etc.

2.1 Introduction
Deep learning can be used to discover malicious commu-

nications. Here, we describe two methods of detecting 

malware communications caused by malware and by exploit 

kits in the huge volumes of logs generated by commonly 

used devices such as firewalls and Web proxy servers.

This chapter is a retelling of a presentation titled “Deep 

Impact: Recognizing Unknown Malicious Activities from Zero 

Knowledge”*1 given as part of the Briefings sessions at the 

Black Hat Europe 2018 international security conference.

2.2 Background
In most cases at present, the following methods are used 

to detect malicious activities, including malware infections.

• Pattern matching (including blacklists and whitelists)

• Behavioral analysis

• Event correlation

However, sophisticated and unknown attacks can circum-

vent these solutions. And even with attacks that are not 

particularly sophisticated or unknown, detection rules for 

pattern matching, for instance, need to be changed in re-

sponse to even small changes in an attack’s pattern. This 

is because the existing detection methods are  based on 

information that an attacker can easily alter, such as the C2 

server domain name, IP address, and the executable’s bi-

nary pattern. Hence, if it is possible to use detection criteria 

that do not rely on these existing methods and that apply to 

essential aspects of an attack that are difficult for attackers 

to alter, we can combine such criteria with existing methods 

to achieve an ever greater level of security.

Some of the solutions described earlier are also very 

expensive and thus not necessarily something that all orga-

nizations can deploy. The aim of our work, therefore, was to 

develop a general-purpose solution that would enable many 

organizations to detect threats based on the logs created 

by common types of servers and network devices, such as 

Web proxy servers, routers, and firewalls, rather than spe-

cialized equipment and security devices. These logs have 

rarely been used effectively in the past, with their use being 

limited to cases such as the following.

• Anomaly detection based on communication vol-

ume, frequency, etc.

• SIEM event correlation

• Detection using IoCs (indicators of compromise) 

when they are available*2

If we can make use of these sorts of logs, which con-

sume valuable disk space, many organizations may be able 

to achieve greater levels of security without making large 

changes to network structure or additional investments.

One possible reason why these sorts of logs have not been 

put to effective use is that, although somewhat dependent 

on system and organizational scale, the logs themselves 

are very large, preventing effective analysis that involves 

high computational complexity. Deep learning, however, is 

known to be suitable for big data analysis; for example, it is 

capable of processing hundreds of millions of images each 

on the order of tens to hundreds of kilobytes in size. So if 

such logs can be optimized for deep learning, it may be pos-

sible to solve this problem.

2. Focused Research (1)

Attacker C2 server Infected device

Continually checks for 
and executes commands

Sets command(s)

Figure 1: Bot or RAT Continually Communicating 
with a Command & Control (C2) Server

10



Vol. 42May 2019

2. Focused Research (1)

© Internet Initiative Japan Inc.

*3 Some recent malware samplesreceive sleep times from a C2 server. Only when the attacker is active, sleep times are short and communication is frequent. At other times, 

the programs sleep for long periods. These sorts of techniques can make it difficult to detect the anomalous communication based on, for example, daily average times.

2.3 Detecting Communications    
 with Malware C&C (C2) Servers
Some types of malware such as bots and RATs continu-

ally connect to their C2 servers to receive commands from 

attackers, which they then execute (Figure 1). Typically, 

they use polling intervals that range from several dozen sec-

onds to several minutes or so. The longer the interval, the 

longer the program waits for any single command, which 

makes it difficult for the attacker to take action. Conversely, 

the shorter the interval, the easier it is for the attacker to 

act, but the easier defenders can detect the activity, since 

the activity will appear toward the top in a simple analysis 

of communication frequency broken down by destination 

hosts*3. What this boils down to is that adjusting the fre-

quency of communication presents both an important task 

and a tough decision for the attacker. Meanwhile, when 

ordinary users within an organization communicate with 

external networks, such as when accessing the Web, it is 

rare for those communications to occur frequently or persist 

over a long time. Figure 2 illustrates what communication 

frequency looks like over the course of an hour when a 

user accesses harmless Web servers (left) and when mal-

ware is continually communicating with a C2 server (right). 

Different communication patterns almost always arise, so 

we thought that if our system could learn the differences, 

it would be able to detect malware communications. This 

method does not rely on DNS name, IP address, URL, and 

the like, so it should detect malware that existing detection 

methods miss.

Here, we divide the logs up by client and server and count 

communications in 1-minute buckets for each 1-hour pe-

riod. We thus convert the logs into pseudo 60-dot images 

on which we perform image recognition using CNNs (con-

volution neural networks), a class of neural network used 

in deep learning. It is known that, depending on the model 

used, CNNs can outperform human recognition accuracy, 

and we therefore transform the logs into images and use 

this class of network in the hopes that this will prove more 

effective than other deep learning models.

Our training dataset is constructed as follows. We use 1.5 

million “images” created from Web proxy logs as our benign 

sample set. For our malicious samples, we use no actual 

(in-the-wild) malware communication patterns and instead 

emulate patterns of periodic communications. With this 

approach, simply by generating a range of conceivable ma-

licious patterns and training our model on them, we should 

be able to detect malware even for which no real-world sam-

ples are available. This is what we mean by the term “zero 
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Figure 2: Illustration of Communication with a Legitimate Web Server (left) and Continual Communication with a C2 Server (right)
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*4 Simple Black-Box Adversarial Perturbations for Deep Networks (https://arxiv.org/abs/1612.06299).

*5 We do not obtain patterns simply by acquiring and running malware samples in a closed environment; instead, we use patterns obtained from actual incidents in 

which malware was connected to a C2 server. This is because the sleep times observed when malware is connected to an in-the-wild C2 server may differ from 

those observed when it is simply run in a closed environment (see footnote *3).

knowledge” in the subtitle of our Black Hat presentation. 

We emulate patterns for a wide range of intervals, from 3 

seconds up to 12 minutes (Figure 3). As a special case, we 

also generate patterns that include sleeps of several minutes 

following several minutes of continuous activity (Figure 4). 

Additionally, to account for patterns that differ only slightly 

from the ones we have come up with and to better resist 

CNN attacks*4, we also (a) apply rotations that shift each dot 

in the generated patterns along a number of intervals and (b) 

randomly set existing values to zero. We thus generate a total 

of around one million patterns.

Moving on to our test dataset, we use around 4.5 million im-

ages constructed from Web proxy logs (in the same manner 

as for our training dataset) as our benign samples. For our 

malicious samples, we use images constructed from logs of 

malware communications taken from in-the-wild incidents to 

see if our system can detect these. Our investigation covers 

the following malware families*5.

• PlugX

• Asruex

• xxmm

• himawari/ReadLeaves

• ChChes

• Elirks

• Logedrut

• ursnif/gozi

• Shiz/Shifu

• Vawtrak

• KINS

Using the model we built, we were able to detect all of these 

malware families. And as shown below, the rates of false 

Figure 4: Emulation of Malicious Communications (2)
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Figure 3: Emulation of Malicious Communications
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positives for our benign samples were also low. So we be-

lieve our system will be effective if we filter out these FQDNs 

using a whitelist.

• Benign sample set 1

Accuracy: 1,565,139/1,566,109 (99.94%)

False positive FQDNs: 64/246,190

• Benign sample set 2

Accuracy: 1,540,419/1,541,050 (99.96%)

False positive FQDNs: 72/243,106

• Benign sample set 3

Accuracy: 1,528,936/1,529,617 (99.96%)

False positive FQDNs: 65/243,185

That said, it is conceivable that Web pages that frequently 

reload, such as Web mail interfaces and sports sites, could 

register as false positives. So to reduce false positives when 

the system is in operation, we can take steps like excluding 

such sites by whitelisting them or regarding communication 

with a Web server as legitimate when alerts from many 

users are raised for that same destination.

Figures 5–9 show examples of communication patterns suc-

cessfully detected from actual malware communications. It 

is evident that communications from the actual samples are 

not perfectly periodic, but the system takes the differences in 

stride and detects the patterns using deep learning. Logedrut 

Figure 8: Logedrug Communication Pattern Figure 9: Vawtrak Communication Pattern

Figure 6: Asruex Communication Pattern

Figure 5: PlugX Communication Pattern

Figure 7: Elirks Communication Pattern
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For space reasons, we do not show all malware families and 

model details here. Further details can be found in our slides*1 

on the Black Hat Europe 2018 website. Since we are not 

building complicated models here, we believe the models can 

be trained on CPU-based systems.

(Figure 8) communicates infrequently, only once every 12 

minutes, but it was still detected as being distinct from the 

benign sample. In the case of Vawtrak (Figure 9), no com-

munications occur in the final 16 minutes, but the system 

detects the malware in cases like these as well.

.EXE

ek.example.com

.HTML

1. Landing

.SWF

2. Exploit 3. Malware

URL path & 
parameters

Substance Content-Type

text/html /sm/Landing 
page

URL path & 
parameters

Substance Content-type 

application/x-javascript /sm/swfobject.jsFlash loader 
script 

URL path & 
parameters

Substance Content-Type

text/htmlIE Exploit /sm/main.html

URL path & 
parameters

Substance Content-Type

application/java-archiveJava Exploit /sm/NeIsFp.jar

URL path & 
parameters

Substance Content-Type

application/octet-streamMalware /dwm.exe

URL path & parametersSubstance Content-Type

Landing page text/html /?
NTI0OTU5&RCDUIv&oJhtJNm=dGFraW5n&wouMDc=Y2FwaXRhbA==&JgtXjOEttIAHrI=Y2FwaXRhbA==&TKCcodYFxdiy=d
Ghpbmdz&tNDodvGjF=Y2FwaXRhbA==&pHtonQrvp=bG9jYXRlZA==&kl345dfdfg234fsd=UDQTpjkGELQNmyN9ZAF1G9P2s
3EeBzhWZiMHT-RTZZA4QrZSQR7Rt3VzyxrckQPskg1TH6mI&pWjLlCBUIUSRIw=Y2FwaXRhbA==&nR45dsgd54lsCs=xXrQ
MvWfbRXQDJ3EKvjcT6NAMVHRGUCL2YqdmrHXefjaf1WkzrfFTF_3ozKATASG6_ZtdfJ

URL path & parametersSubstance Content-Type 

Malware application/x-msdownload /?
MjEwNzA1&mTONXmiGJttk&nR45dsgd54lsCs=wXrQMvXcJwDQDobGMvrESLtGNknQA0KK2Iv2_dqyEoH9fWnihNzUSkr16
B2aCm3W&UEiQzsUEYQeeS=Y2FwaXRhbA==&jeeGWAgbhZSFoHh=bG9jYXRlZA==&KRssZN=bG9jYXRlZA==&BWeciQa
XKEgAey=bG9jYXRlZA==&SOymAmL=cG9wdWxhcg==&uLNyyCiGt=cG9wdWxhcg==&wlNBeZFOQXgP=dW5rbm93bg==&
kl345dfdfg234fsd=_fcpKeRXaVKziULVLwczyIlbUVJFpqj6i0SAmxDPhcGD_hKEUQ1M-5KREYFmmF7F

URL path & parametersSubstance Content-Type

Flash Exploit application/x-shockwave-flash /?
NTQ0NjEw&zWuWFX&lskPeVWn=dW5rbm93bg==&NCDmQdmxCxapA=dW5rbm93bg==&eLCxfNVxDhHqBH=Y29uc2lkZXI
=&nzZHzkCNdL=cmVwb3J0&HZELKhjPUenym=cG9wdWxhcg==&nR45dsgd54lsCs=wnrQMvXcKxXQFYbDKuXDSKZDKU7
WG0aVw4-dhMG3YpjNfynz1ezURnL1tASVVFiRrbMdKL&kl345dfdfg234fsd=VYOQfk20LUKgEzm9sJVFhBo66tjUmDmBCd1
JLX-UeLMg9DqZOSHbIL0Vz0zLMRQIgigECy&rZpDUeqxIDnMQL=bG9jYXRlZA==&LENxPZQZ=cmVwb3J0

Figure 11: Example of Rig Exploit Kit’s Content-Type Sequence

Figure 10: Sequence of Content-Types Sent by an Exploit Kit Server

Figure 12: Example of KaiXin Exploit Kit’s Content-Type Sequence
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2.4 Exploit Kit Detection
When a PC accessing the Web is redirected to an exploit 

kit, the exploit kit server sends content in the order shown 

in Figure 10.

1.Landing page: Identifies the PC’s Web browser environ-

ment and loads the next stage of exploit content. May 

also include an exploit(s) for the browser itself. The 

Content-Type is text/html.

2.Exploit content: Content file containing exploit(s) for 

the browser and its plug-ins. Content-Types include ap-

plication/x-shockwave-flash, application/x-java-archive, 

application/x-silverlight-app, application/pdf.

3.Malware: If the previous stage’s exploit(s) succeeds, 

malware that infects the PC itself is loaded. In most 

cases, the Content-Type is application/octet-stream or 

application/x-msdownload.

Figures 11 and 12 show examples of the Content-Type 

sequences when, respectively, Rig Exploit Kit and KaiXin 

Exploit Kit are observed. The figures show that their 

Content-Type transitions are indeed as described above.

On the other hand, we can think of almost no cases in 

which normal Web browsing would produce these sorts of 

sequences in Content-Type sent by a server. In large-scale 

Web services, for example, dedicated servers are typically 

set up to handle each Content-Type, so content that is sub-

ject to exploits, such as Flash and Java, and HTML content 

like landing pages tend to come from different servers, as 

shown in Figure 13. And in cases where a single server 

hosts all of a service’s content, data like images and CSS, 

which recent exploit kits do not use all that much, come 

from the same server, as shown in Figure 14.

.HTML .JS .CSS .HTML .CSS .HTML .SWF .JPG .PNG

www.example.org

.PNG .JPG .SWF .PNG .SWF .JPG .PNG

.HTML .CSS .CSS .JS .HTML .CSS .JS

img.example.com

static.example.com

Figure 13: Example Content-Type Sequences for a Web Service with Separate Servers for Content-Types

Figure 14: Example Content-Type Sequence for a Service Hosted on a Single Web Server
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*6 To be precise, we split log lines up according to client PC – destination server pairs, and then further split them into Web browser sessions (being the series of 

requests and responses caused by a Web browser in order to display the Web page at a given URL). The Web proxy logs we used have each Web browser session 

recorded separately. In more common environments, it is possible to split up Web proxy logs according to fields such as the timestamp.

*7 With the exploit kits we have observed recently, in almost no cases is content sent by the server more than five times. However, if such cases were to rise in 

future, we think the upper limit would need to be raised.

Given the above, we thought that if analysis of Web proxy 

logs could differentiate between the sequences for exploit 

kit servers and the sequences for normal Web server con-

nections, it might be possible to detect exploit kits without 

relying on techniques like pattern matching. The Content-

Type sequences peculiar to the exploit kits mentioned above 

are strongly related to the fundamental functions by which 

exploit kits force a Web browser to run exploits and infect 

a PC with malware. We should, therefore, be able to detect 

unknown exploit kits that operate in a similar manner. For the 

same reason, it should not be easy for an exploit kit author to 

evade detection by altering the sequence.

To differentiate between sequences, we use a class of neu-

ral networks called RNNs (recurrent neural network), which 

are used in natural language processing and the processing 

of time-series data such as video and audio streams. So first, 

we need to convert the Web proxy logs into a form that an 

RNN model can process. We split the logs into individual 

client PC – destination server pairs and convert series of 

requests and responses into sequences*6. To improve noise 

tolerance, we eliminate duplicate Content-Types from within 

each sequence. We also limit sequences to a length of five*7, 

deleting any lines beyond that. Finally, we convert each line 

in the sequence to an 84-dimension vector. The first 83 

slots in the vector represent the Content-Type in one-hot 

encoding, and the final slot is a flag indicating whether the 

referer and request URL contain the same domain name.

Our training dataset comprises a benign sample of around 

580,000 sequences constructed from some 3.9 million lines 

from Web proxy logs, and a malicious sample of around 

300,000 sequences designed to emulate conceivable ex-

ploit kit patterns. Instead of using patterns observed in the 

wild for our malicious sample, we generate a comprehensive 

range of patterns representing content sequences that could 

conceivably be produced by exploit kits. Figure 15 shows 

examples of such  pseudo-sequences. Our sample includes 

.HTML .JS .SWF

.SWF

.JAR DATA

.SWF

C Multiple exploit content downloaded

.HTMLD Exploit unsuccessful, no malware loaded

.HTML .EXE .SWF .EXEB Exploits succeed multiple times
 (exploit in landing page and separately loaded Flash exploit)

.HTML DATAA Typical sequence for recent exploit kits

Figure 15: Examples of Generated Pseudo-sequences for Exploit Kits
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sequences that represent cases where several types of ex-

ploit content are loaded, cases where an exploit succeeds 

multiple times in a row, and cases where the exploit is un-

successful and no malware download takes place.

To test our model, we used a malicious sample constructed 

from actual communication data for the following 14 exploit 

kits, and a benign sample of around 1.7 million sequences 

constructed from Web proxy logs for a time period that dif-

fers from that of the training set.

• Rig

• Nebula 

• Terror 

• Sundown 

• KaiXin 

• Neutrino 

• Angler 

• Nuclear 

• Magnitude 

• Fiesta 

• Sweet Orange 

• Goon 

• Infinity 

• Astrum

The model we built was able to detect all of the exploit kits 

listed above. And as shown below, false positive rates for 

our benign samples were also relatively low.

• Benign sample set 1

Sequences: 562,390

False positives: 642

Accuracy: 0.9988

• Benign sample set 2

Sequences: 574,452

False positives: 681

Accuracy: 0.9988

• Benign sample set 3

Sequences: 576,294

False positives: 639

Accuracy: 0.9988

We have confirmed that using a whitelist of around 15 lines 

can halve the number of false positives listed above. When 

applying a system like ours to production environments, we 

would recommend combining it with other methods to nar-

row down the alerts, such as whitelists, host reputation, 

anomaly detection, and automated sandbox analysis.

Our slides*1 available on the Black Hat Europe 2018 website 

also present a method of identifying Rig Exploit Kit from 

Web proxy logs using an MLP (multilayer perceptron) model. 

This method focuses on features of individual exploit kits’ 

URLs, so while it is not suited to detecting unknown exploit 

kits, it is useful for identifying known exploit kits and track-

ing their variants. Using it with the RNN-based exploit kit 

detection method described here can improve the accuracy 

of detection of known exploit kits.
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