
© Internet Initiative Japan Inc.

Deep-Learning for Log Analysis
to Detect Malicious Communications

*1 Deep Impact: Recognizing Unknown Malicious Activities from Zero Knowledge (https://www.blackhat.com/eu-18/briefings/schedule/index.html#deep-impact-rec-

ognizing-unknown-malicious-activities-from-zero-knowledge-12276).

*2 For example, IoCs may be obtained from host names discovered via anomaly detection or analysis of suspicious devices reported by users, as well as from external

reports, etc.

2.1 Introduction
Deep learning can be used to discover malicious commu-

nications. Here, we describe two methods of detecting

malware communications caused by malware and by exploit

kits in the huge volumes of logs generated by commonly

used devices such as firewalls and Web proxy servers.

This chapter is a retelling of a presentation titled “Deep

Impact: Recognizing Unknown Malicious Activities from Zero

Knowledge”*1 given as part of the Briefings sessions at the

Black Hat Europe 2018 international security conference.

2.2 Background
In most cases at present, the following methods are used

to detect malicious activities, including malware infections.

• Pattern matching (including blacklists and whitelists)

• Behavioral analysis

• Event correlation

However, sophisticated and unknown attacks can circum-

vent these solutions. And even with attacks that are not

particularly sophisticated or unknown, detection rules for

pattern matching, for instance, need to be changed in re-

sponse to even small changes in an attack’s pattern. This

is because the existing detection methods are based on

information that an attacker can easily alter, such as the C2

server domain name, IP address, and the executable’s bi-

nary pattern. Hence, if it is possible to use detection criteria

that do not rely on these existing methods and that apply to

essential aspects of an attack that are difficult for attackers

to alter, we can combine such criteria with existing methods

to achieve an ever greater level of security.

Some of the solutions described earlier are also very

expensive and thus not necessarily something that all orga-

nizations can deploy. The aim of our work, therefore, was to

develop a general-purpose solution that would enable many

organizations to detect threats based on the logs created

by common types of servers and network devices, such as

Web proxy servers, routers, and firewalls, rather than spe-

cialized equipment and security devices. These logs have

rarely been used effectively in the past, with their use being

limited to cases such as the following.

• Anomaly detection based on communication vol-

ume, frequency, etc.

• SIEM event correlation

• Detection using IoCs (indicators of compromise)

when they are available*2

If we can make use of these sorts of logs, which con-

sume valuable disk space, many organizations may be able

to achieve greater levels of security without making large

changes to network structure or additional investments.

One possible reason why these sorts of logs have not been

put to effective use is that, although somewhat dependent

on system and organizational scale, the logs themselves

are very large, preventing effective analysis that involves

high computational complexity. Deep learning, however, is

known to be suitable for big data analysis; for example, it is

capable of processing hundreds of millions of images each

on the order of tens to hundreds of kilobytes in size. So if

such logs can be optimized for deep learning, it may be pos-

sible to solve this problem.

2. Focused Research (1)

Attacker C2 server Infected device

Continually checks for
and executes commands

Sets command(s)

Figure 1: Bot or RAT Continually Communicating
with a Command & Control (C2) Server

10

Vol. 42May 2019

2. Focused Research (1)

© Internet Initiative Japan Inc.

*3 Some recent malware samplesreceive sleep times from a C2 server. Only when the attacker is active, sleep times are short and communication is frequent. At other times,

the programs sleep for long periods. These sorts of techniques can make it difficult to detect the anomalous communication based on, for example, daily average times.

2.3 Detecting Communications
 with Malware C&C (C2) Servers
Some types of malware such as bots and RATs continu-

ally connect to their C2 servers to receive commands from

attackers, which they then execute (Figure 1). Typically,

they use polling intervals that range from several dozen sec-

onds to several minutes or so. The longer the interval, the

longer the program waits for any single command, which

makes it difficult for the attacker to take action. Conversely,

the shorter the interval, the easier it is for the attacker to

act, but the easier defenders can detect the activity, since

the activity will appear toward the top in a simple analysis

of communication frequency broken down by destination

hosts*3. What this boils down to is that adjusting the fre-

quency of communication presents both an important task

and a tough decision for the attacker. Meanwhile, when

ordinary users within an organization communicate with

external networks, such as when accessing the Web, it is

rare for those communications to occur frequently or persist

over a long time. Figure 2 illustrates what communication

frequency looks like over the course of an hour when a

user accesses harmless Web servers (left) and when mal-

ware is continually communicating with a C2 server (right).

Different communication patterns almost always arise, so

we thought that if our system could learn the differences,

it would be able to detect malware communications. This

method does not rely on DNS name, IP address, URL, and

the like, so it should detect malware that existing detection

methods miss.

Here, we divide the logs up by client and server and count

communications in 1-minute buckets for each 1-hour pe-

riod. We thus convert the logs into pseudo 60-dot images

on which we perform image recognition using CNNs (con-

volution neural networks), a class of neural network used

in deep learning. It is known that, depending on the model

used, CNNs can outperform human recognition accuracy,

and we therefore transform the logs into images and use

this class of network in the hopes that this will prove more

effective than other deep learning models.

Our training dataset is constructed as follows. We use 1.5

million “images” created from Web proxy logs as our benign

sample set. For our malicious samples, we use no actual

(in-the-wild) malware communication patterns and instead

emulate patterns of periodic communications. With this

approach, simply by generating a range of conceivable ma-

licious patterns and training our model on them, we should

be able to detect malware even for which no real-world sam-

ples are available. This is what we mean by the term “zero

0

10

20

30

40

50

9

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

2

0

0

0

0

0

0

3

0

8

0

0

0

0

4

0

1

0

0

0

0

5

0

0

0

0

0

0

6

0

0

0

0

0

0

7

0

0

0

0

0

0

8

0

0

0

0

0

0

9

(1) To a legitimate Web server

0

10

20

30

40

50

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

2

0

0

0

0

0

0

3

1

1

1

1

1

1

4

0

0

0

0

0

0

5

1

1

1

1

1

1

6

0

0

0

0

0

0

7

1

1

1

1

1

1

8

0

0

0

0

0

0

9

(2) To a C2 server

(min.)(min.)

Figure 2: Illustration of Communication with a Legitimate Web Server (left) and Continual Communication with a C2 Server (right)

1111

© Internet Initiative Japan Inc.

*4 Simple Black-Box Adversarial Perturbations for Deep Networks (https://arxiv.org/abs/1612.06299).

*5 We do not obtain patterns simply by acquiring and running malware samples in a closed environment; instead, we use patterns obtained from actual incidents in

which malware was connected to a C2 server. This is because the sleep times observed when malware is connected to an in-the-wild C2 server may differ from

those observed when it is simply run in a closed environment (see footnote *3).

knowledge” in the subtitle of our Black Hat presentation.

We emulate patterns for a wide range of intervals, from 3

seconds up to 12 minutes (Figure 3). As a special case, we

also generate patterns that include sleeps of several minutes

following several minutes of continuous activity (Figure 4).

Additionally, to account for patterns that differ only slightly

from the ones we have come up with and to better resist

CNN attacks*4, we also (a) apply rotations that shift each dot

in the generated patterns along a number of intervals and (b)

randomly set existing values to zero. We thus generate a total

of around one million patterns.

Moving on to our test dataset, we use around 4.5 million im-

ages constructed from Web proxy logs (in the same manner

as for our training dataset) as our benign samples. For our

malicious samples, we use images constructed from logs of

malware communications taken from in-the-wild incidents to

see if our system can detect these. Our investigation covers

the following malware families*5.

• PlugX

• Asruex

• xxmm

• himawari/ReadLeaves

• ChChes

• Elirks

• Logedrut

• ursnif/gozi

• Shiz/Shifu

• Vawtrak

• KINS

Using the model we built, we were able to detect all of these

malware families. And as shown below, the rates of false

Figure 4: Emulation of Malicious Communications (2)

0

10

20

30

40

50

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

2

0

1

0

1

0

1

3

1

0

1

0

1

0

4

1

0

1

0

1

0

5

0

1

0

1

0

1

6

0

1

0

1

0

1

7

1

0

1

0

1

0

8

1

0

1

0

1

0

9

0

10

20

30

40

50

1

0

1

1

0

0

0

1

0

0

1

0

0

1

1

1

0

1

1

0

2

0

1

0

0

1

0

3

0

1

1

0

1

1

4

0

0

1

0

0

1

1

0

0

1

0

0

1

1

0

1

1

0

0

1

0

0

1

0

5

1

0

1

1

0

1

6 7 8 9

2 min. of continual communication followed by 2-min. sleep 3 min. of continual communication followed by 3-min. sleep

...

(min.) (min.)

Emulation of communication once every 3 seconds

0

10

20

30

40

50

20

20

20

20

20

20

0

20

20

20

20

20

20

1

20

20

20

20

20

20

2

20

20

20

20

20

20

3

20

20

20

20

20

20

4

20

20

20

20

20

20

5

20

20

20

20

20

20

6

20

20

20

20

20

20

7

20

20

20

20

20

20

8

20

20

20

20

20

20

9

0

10

20

30

40

50

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

2

0

0

0

0

0

0

3

0

0

1

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

5

0

0

0

1

0

0

6 7 8 9

Emulation of communication every 12 minutes

...

(min.)(min.)

Figure 3: Emulation of Malicious Communications

12

Vol. 42May 2019

2. Focused Research (1)

© Internet Initiative Japan Inc.

positives for our benign samples were also low. So we be-

lieve our system will be effective if we filter out these FQDNs

using a whitelist.

• Benign sample set 1

Accuracy: 1,565,139/1,566,109 (99.94%)

False positive FQDNs: 64/246,190

• Benign sample set 2

Accuracy: 1,540,419/1,541,050 (99.96%)

False positive FQDNs: 72/243,106

• Benign sample set 3

Accuracy: 1,528,936/1,529,617 (99.96%)

False positive FQDNs: 65/243,185

That said, it is conceivable that Web pages that frequently

reload, such as Web mail interfaces and sports sites, could

register as false positives. So to reduce false positives when

the system is in operation, we can take steps like excluding

such sites by whitelisting them or regarding communication

with a Web server as legitimate when alerts from many

users are raised for that same destination.

Figures 5–9 show examples of communication patterns suc-

cessfully detected from actual malware communications. It

is evident that communications from the actual samples are

not perfectly periodic, but the system takes the differences in

stride and detects the patterns using deep learning. Logedrut

Figure 8: Logedrug Communication Pattern Figure 9: Vawtrak Communication Pattern

Figure 6: Asruex Communication Pattern

Figure 5: PlugX Communication Pattern

Figure 7: Elirks Communication Pattern

0

10

20

30

40

50

6

3

0

0

1

6

0

6

6

6

3

0

0

1

0

3

6

8

6

4

2

3

0

0

1

6

8

3

6

6

3

0

0

0

4

3

6

7

6

3

0

5

0

0

2

6

8

7

6

6

3

0

0

1

5

7

6

7

6

3

0

0

8

0

2

6

8

6

5

9

0

10

20

30

40

50

96

97

96

97

95

92

0

95

93

95

88

95

94

1

92

95

94

94

91

96

2

96

96

93

96

93

98

3

95

95

88

94

91

94

4

97

98

98

101

101

98

97

93

97

97

100

92

101

95

97

97

97

94

95

101

96

96

89

95

5

96

92

95

98

96

98

6 7 8 9(min.) (min.)

0

10

20

30

40

50

0

0

0

0

0

2

0

2

2

2

2

0

0

0

2

0

0

2

0

2

0

0

0

0

0

0

2

2

2

2

0

2

0

0

0

0

0

0

0

2

0

2

0

0

2

0

2

2

0

2

0

2

0

0

4

0

2

0

2

2

(min.)0 1 2 3 4 5 6 7 8 9

0

10

20

30

40

50

1

0

1

0

1

0

0

0

1

0

1

0

1

1

1

1

1

1

0

0

2

1

0

0

0

1

1

3

0

1

1

0

0

0

4

1

0

0

1

1

0

5

1

1

0

1

0

1

6

0

0

1

0

1

1

7

1

1

1

0

0

0

8

1

0

0

1

1

0

9 (min.)

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 (min.)

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

1

1

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

1

1

0

0

0

0

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 (min.)

1313

© Internet Initiative Japan Inc.

For space reasons, we do not show all malware families and

model details here. Further details can be found in our slides*1

on the Black Hat Europe 2018 website. Since we are not

building complicated models here, we believe the models can

be trained on CPU-based systems.

(Figure 8) communicates infrequently, only once every 12

minutes, but it was still detected as being distinct from the

benign sample. In the case of Vawtrak (Figure 9), no com-

munications occur in the final 16 minutes, but the system

detects the malware in cases like these as well.

.EXE

ek.example.com

.HTML

1. Landing

.SWF

2. Exploit 3. Malware

URL path &
parameters

Substance Content-Type

text/html /sm/Landing
page

URL path &
parameters

Substance Content-type

application/x-javascript /sm/swfobject.jsFlash loader
script

URL path &
parameters

Substance Content-Type

text/htmlIE Exploit /sm/main.html

URL path &
parameters

Substance Content-Type

application/java-archiveJava Exploit /sm/NeIsFp.jar

URL path &
parameters

Substance Content-Type

application/octet-streamMalware /dwm.exe

URL path & parametersSubstance Content-Type

Landing page text/html /?
NTI0OTU5&RCDUIv&oJhtJNm=dGFraW5n&wouMDc=Y2FwaXRhbA==&JgtXjOEttIAHrI=Y2FwaXRhbA==&TKCcodYFxdiy=d
Ghpbmdz&tNDodvGjF=Y2FwaXRhbA==&pHtonQrvp=bG9jYXRlZA==&kl345dfdfg234fsd=UDQTpjkGELQNmyN9ZAF1G9P2s
3EeBzhWZiMHT-RTZZA4QrZSQR7Rt3VzyxrckQPskg1TH6mI&pWjLlCBUIUSRIw=Y2FwaXRhbA==&nR45dsgd54lsCs=xXrQ
MvWfbRXQDJ3EKvjcT6NAMVHRGUCL2YqdmrHXefjaf1WkzrfFTF_3ozKATASG6_ZtdfJ

URL path & parametersSubstance Content-Type

Malware application/x-msdownload /?
MjEwNzA1&mTONXmiGJttk&nR45dsgd54lsCs=wXrQMvXcJwDQDobGMvrESLtGNknQA0KK2Iv2_dqyEoH9fWnihNzUSkr16
B2aCm3W&UEiQzsUEYQeeS=Y2FwaXRhbA==&jeeGWAgbhZSFoHh=bG9jYXRlZA==&KRssZN=bG9jYXRlZA==&BWeciQa
XKEgAey=bG9jYXRlZA==&SOymAmL=cG9wdWxhcg==&uLNyyCiGt=cG9wdWxhcg==&wlNBeZFOQXgP=dW5rbm93bg==&
kl345dfdfg234fsd=_fcpKeRXaVKziULVLwczyIlbUVJFpqj6i0SAmxDPhcGD_hKEUQ1M-5KREYFmmF7F

URL path & parametersSubstance Content-Type

Flash Exploit application/x-shockwave-flash /?
NTQ0NjEw&zWuWFX&lskPeVWn=dW5rbm93bg==&NCDmQdmxCxapA=dW5rbm93bg==&eLCxfNVxDhHqBH=Y29uc2lkZXI
=&nzZHzkCNdL=cmVwb3J0&HZELKhjPUenym=cG9wdWxhcg==&nR45dsgd54lsCs=wnrQMvXcKxXQFYbDKuXDSKZDKU7
WG0aVw4-dhMG3YpjNfynz1ezURnL1tASVVFiRrbMdKL&kl345dfdfg234fsd=VYOQfk20LUKgEzm9sJVFhBo66tjUmDmBCd1
JLX-UeLMg9DqZOSHbIL0Vz0zLMRQIgigECy&rZpDUeqxIDnMQL=bG9jYXRlZA==&LENxPZQZ=cmVwb3J0

Figure 11: Example of Rig Exploit Kit’s Content-Type Sequence

Figure 10: Sequence of Content-Types Sent by an Exploit Kit Server

Figure 12: Example of KaiXin Exploit Kit’s Content-Type Sequence

14

Vol. 42May 2019

2. Focused Research (1)

© Internet Initiative Japan Inc.

2.4 Exploit Kit Detection
When a PC accessing the Web is redirected to an exploit

kit, the exploit kit server sends content in the order shown

in Figure 10.

1.Landing page: Identifies the PC’s Web browser environ-

ment and loads the next stage of exploit content. May

also include an exploit(s) for the browser itself. The

Content-Type is text/html.

2.Exploit content: Content file containing exploit(s) for

the browser and its plug-ins. Content-Types include ap-

plication/x-shockwave-flash, application/x-java-archive,

application/x-silverlight-app, application/pdf.

3.Malware: If the previous stage’s exploit(s) succeeds,

malware that infects the PC itself is loaded. In most

cases, the Content-Type is application/octet-stream or

application/x-msdownload.

Figures 11 and 12 show examples of the Content-Type

sequences when, respectively, Rig Exploit Kit and KaiXin

Exploit Kit are observed. The figures show that their

Content-Type transitions are indeed as described above.

On the other hand, we can think of almost no cases in

which normal Web browsing would produce these sorts of

sequences in Content-Type sent by a server. In large-scale

Web services, for example, dedicated servers are typically

set up to handle each Content-Type, so content that is sub-

ject to exploits, such as Flash and Java, and HTML content

like landing pages tend to come from different servers, as

shown in Figure 13. And in cases where a single server

hosts all of a service’s content, data like images and CSS,

which recent exploit kits do not use all that much, come

from the same server, as shown in Figure 14.

.HTML .JS .CSS .HTML .CSS .HTML .SWF .JPG .PNG

www.example.org

.PNG .JPG .SWF .PNG .SWF .JPG .PNG

.HTML .CSS .CSS .JS .HTML .CSS .JS

img.example.com

static.example.com

Figure 13: Example Content-Type Sequences for a Web Service with Separate Servers for Content-Types

Figure 14: Example Content-Type Sequence for a Service Hosted on a Single Web Server

1515

© Internet Initiative Japan Inc.

*6 To be precise, we split log lines up according to client PC – destination server pairs, and then further split them into Web browser sessions (being the series of

requests and responses caused by a Web browser in order to display the Web page at a given URL). The Web proxy logs we used have each Web browser session

recorded separately. In more common environments, it is possible to split up Web proxy logs according to fields such as the timestamp.

*7 With the exploit kits we have observed recently, in almost no cases is content sent by the server more than five times. However, if such cases were to rise in

future, we think the upper limit would need to be raised.

Given the above, we thought that if analysis of Web proxy

logs could differentiate between the sequences for exploit

kit servers and the sequences for normal Web server con-

nections, it might be possible to detect exploit kits without

relying on techniques like pattern matching. The Content-

Type sequences peculiar to the exploit kits mentioned above

are strongly related to the fundamental functions by which

exploit kits force a Web browser to run exploits and infect

a PC with malware. We should, therefore, be able to detect

unknown exploit kits that operate in a similar manner. For the

same reason, it should not be easy for an exploit kit author to

evade detection by altering the sequence.

To differentiate between sequences, we use a class of neu-

ral networks called RNNs (recurrent neural network), which

are used in natural language processing and the processing

of time-series data such as video and audio streams. So first,

we need to convert the Web proxy logs into a form that an

RNN model can process. We split the logs into individual

client PC – destination server pairs and convert series of

requests and responses into sequences*6. To improve noise

tolerance, we eliminate duplicate Content-Types from within

each sequence. We also limit sequences to a length of five*7,

deleting any lines beyond that. Finally, we convert each line

in the sequence to an 84-dimension vector. The first 83

slots in the vector represent the Content-Type in one-hot

encoding, and the final slot is a flag indicating whether the

referer and request URL contain the same domain name.

Our training dataset comprises a benign sample of around

580,000 sequences constructed from some 3.9 million lines

from Web proxy logs, and a malicious sample of around

300,000 sequences designed to emulate conceivable ex-

ploit kit patterns. Instead of using patterns observed in the

wild for our malicious sample, we generate a comprehensive

range of patterns representing content sequences that could

conceivably be produced by exploit kits. Figure 15 shows

examples of such pseudo-sequences. Our sample includes

.HTML .JS .SWF

.SWF

.JAR DATA

.SWF

C Multiple exploit content downloaded

.HTMLD Exploit unsuccessful, no malware loaded

.HTML .EXE .SWF .EXEB Exploits succeed multiple times
 (exploit in landing page and separately loaded Flash exploit)

.HTML DATAA Typical sequence for recent exploit kits

Figure 15: Examples of Generated Pseudo-sequences for Exploit Kits

16

Vol. 42May 2019

2. Focused Research (1)

© Internet Initiative Japan Inc.

sequences that represent cases where several types of ex-

ploit content are loaded, cases where an exploit succeeds

multiple times in a row, and cases where the exploit is un-

successful and no malware download takes place.

To test our model, we used a malicious sample constructed

from actual communication data for the following 14 exploit

kits, and a benign sample of around 1.7 million sequences

constructed from Web proxy logs for a time period that dif-

fers from that of the training set.

• Rig

• Nebula

• Terror

• Sundown

• KaiXin

• Neutrino

• Angler

• Nuclear

• Magnitude

• Fiesta

• Sweet Orange

• Goon

• Infinity

• Astrum

The model we built was able to detect all of the exploit kits

listed above. And as shown below, false positive rates for

our benign samples were also relatively low.

• Benign sample set 1

Sequences: 562,390

False positives: 642

Accuracy: 0.9988

• Benign sample set 2

Sequences: 574,452

False positives: 681

Accuracy: 0.9988

• Benign sample set 3

Sequences: 576,294

False positives: 639

Accuracy: 0.9988

We have confirmed that using a whitelist of around 15 lines

can halve the number of false positives listed above. When

applying a system like ours to production environments, we

would recommend combining it with other methods to nar-

row down the alerts, such as whitelists, host reputation,

anomaly detection, and automated sandbox analysis.

Our slides*1 available on the Black Hat Europe 2018 website

also present a method of identifying Rig Exploit Kit from

Web proxy logs using an MLP (multilayer perceptron) model.

This method focuses on features of individual exploit kits’

URLs, so while it is not suited to detecting unknown exploit

kits, it is useful for identifying known exploit kits and track-

ing their variants. Using it with the RNN-based exploit kit

detection method described here can improve the accuracy

of detection of known exploit kits.

Hisao Nashiwa

Threat Analyst, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Mr. Nashiwa is a member of IIJ-SECT, which is IIJ’s private CSIRT.
His work includes incident response, malware analysis and network traffic analysis, and he has thus been investigating malicious activities
over nine years. He has been researching cyber crimes such as those involving exploit kits and malware for many years and has expertise
in malware analysis. He is a frequent conference speaker and has given talks and hands-on training sessions multiple times at international
conferences such as Black Hat and FIRST TC.

Hiroshi Suzuki

Malware & Forensic Analyst, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
As a member of IIJ-SECT, Mr. Suzuki is a malware analyst and a forensic investigator. He has dedicated over 13 years to the areas. As a
frequent speaker and trainer for international conferences, he has given presentations and trainings at Black Hat (USA, Europe and Asia) and
FIRST TC multiple times.

1717

	2.	Focused Research (1)
	2.1	Introduction
	2.2	Background
	2.3 Detecting Communications with Malware C&C (C2) Servers
	2.4	Exploit Kit Detection

