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Executive Summary

Junichi Shimagami

Mr. Shimagami is a Senior Executive Officer and the CTO of IIJ. His interest in the Internet led to him joining IIJ in 
September 1996. After engaging in the design and construction of the A-Bone Asia region network spearheaded by IIJ, 
as well as IIJ’s backbone network, he was put in charge of IIJ network services. Since 2015, he has been responsible 
for network, cloud, and security technology across the board as CTO. In April 2017, he became chairman of the 
Telecom Services Association of Japan MVNO Council.

Conventional DDoS attacks primarily used botnets consisting of a large number of malware-infected PCs to 
flood the attack target with connections. Then from around 2013, we began to observe large-scale DDoS at-
tacks where the attacker had taken advantage of poorly configured IoT devices, such as home routers and in-
ternet cameras, exploiting their vulnerabilities to infect them with malware.

We expect the number of internet-connected IoT devices to continue rising strongly ahead, and preventing 
them from being used in DDoS attacks will be crucial to keeping the internet safe. In response to such threats, 
on February 1, 2019, Japan’s Ministry of Internal Affairs and Communications, the National Institute of Infor-
mation Communications and Technology (NICT), and telecommunications carriers unveiled a project to survey 
IoT devices and alert users called “NOTICE (National Operation Towards IoT Clean Environment)”.

Through the NOTICE project, the NICT will survey IoT devices on the internet to identify devices vulnerable to 
cyberattacks and pass information about relevant devices onto the telecommunications carriers. The carriers 
will then identify the users of those devices and alert them to the issue. This is a collaboration between gov-
ernment and the private sector aimed at enhancing the safety of internet-connected IoT devices, and IIJ is an 
active participant. 

The IIR introduces the wide range of technology that IIJ researches and develops, comprising periodic observa-
tion reports that provide an outline of various data IIJ obtains through the daily operation of services, as well as 
focused research examining specific areas of technology.

As our periodic observation report for this edition, Chapter 1 discusses our SOC Report. IIJ’s SOC collates and 
analyzes a range of logs, including those from security devices provided as IIJ services, on its Data Analytics 
Platform, and we release up-to-date information on threats observed in blog format via wizSafe Security Signal. 
In this edition, we draw from past wizSafe Security Signal posts and look at three types of notable activity re-
vealed using our Data Analytics Platform and also describe the use of our Data Analytics Platform for machine 
learning.

Our first focused research report in Chapter 2, titled “Deep-Learning Analysis of Logs to Detect Malicious Com-
munications”, is a restructured version of the content of a presentation given by IIJ staff at Black Hat Europe 
2018. The report looks at general-purpose methods for detecting threats using logs from commonly available 
servers and network devices, rather than using specialized equipment or security devices. These huge logs re-
quire complex processing, but our research has confirmed there is potential to make effective use of them if 
they are properly optimized for deep learning.

Our second focused research report in Chapter 3 discusses the overhaul of IIJ Secure MX Service, the email 
gateway service that IIJ provides. More than 10 years have passed since the service was first launched. It 
remains a key service for IIJ and continues to see strong growth in subscriptions to this day. That said, with 
the changes in the landscape over those 10 years, the system had grown obsolete and was saddled by various 
issues. The chapter presents a report from one of the engineers involved in development process, which includ-
ed revising system architecture to solve those issues and the decision to develop the system in-house, and we 
hope this serves as a good reference.

Through activities such as these, IIJ strives to improve and develop its services on a daily basis while maintain-
ing the stability of the Internet. We will continue to provide a variety of services and solutions that our custom-
ers can take full advantage of as infrastructure for their corporate activities.
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*1 IIJ announces new security business brand wizSafe (https://www.iij.ad.jp/en/news/pressrelease/2016/1031.html).

*2 wizSafe (in Japanese at https://wizsafe.iij.ad.jp).

*3 IIJ, Internet Infrastructure Review (IIR) Vol. 38 (https://www.iij.ad.jp/en/dev/iir/038.html).

*4 wizSafe, “wizSafe Security Signal 2018 Annual Summary” (in Japanese at https://wizsafe.iij.ad.jp/2019/03/601/).

1. Periodic Observation Report

SOC Report

1.1 Introduction
IIJ announced its new security business brand wizSafe*1 on 

October 31, 2016 and is constantly working to bring about 

a world in which customers can use the Internet safely. As 

part of such efforts, we release up-to-date information on 

security threats observed at our SOC in blog format via wiz-

Safe Security Signal*2. This includes some information on 

threats identified through IIJ’s Data Analytics Platform. For 

an overview of the Data Analytics Platform, see Internet 

Infrastructure Review (IIR) Vol. 38*3.

Here, we give an overview of analysis using the Data 

Analytics Platform. The logs collected on the platform nat-

urally include those from security devices such as firewalls, 

IPS/IDS, and antivirus solutions provided as IIJ services, as 

well as logs of DNS queries, Web access, incoming/outgo-

ing email, and so forth. Characteristically, these logs contain 

only a tiny amount of abnormal traffic (threats) among a 

large amount of normal traffic. We therefore need to think 

about how to go about aggregating and visualizing the data 

so that we can identify threats clearly.

Section 1.2 describes information on threats revealed via 

the Data Analytics Platform in 2018, and Section 1.3 de-

scribes new initiatives using the Data Analytics Platform. 

The observations for 2018 are summarized in wizSafe 

Security Signal*4.

1.2 Observational Data
First, we look at activity identified using the Data Analytics 

Platform that is particularly noteworthy. This information is 

taken from wizSafe Security Signal posts from last year.

1.2.1 Attacks Involving Cryptocurrencies

Attempts to monetize attacks using cryptocurrencies at-

tracted attention in 2018. Analysis on IIJ’s Data Analytics 

Platform also revealed several cases of attackers attempting 

to exploit cryptocurrencies.

The first example involves manipulating a website to embed 

a mining script. Our SOC’s observations uncovered multiple 

cases of mining scripts embedded in websites that do not 

appear to have been put there intentionally by the website 

Figure 1: Overview of GhostMiner Attack
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*5 wizSafe, “GhostMiner infections spreading” (in Japanese at https://wizsafe.iij.ad.jp/2018/04/323/).

*6 wizSafe, “wizSafe Security Signal January 2018 Observation Report” (in Japanese at https://wizsafe.iij.ad.jp/2018/02/247/).

*7 wizSafe, “wizSafe Security Signal February 2018 Observation Report” (in Japanese at https://wizsafe.iij.ad.jp/2018/03/286/).

*8 wizSafe, “Ethereum JSON-RPC scans observed” (in Japanese at https://wizsafe.iij.ad.jp/2019/01/541/).

1. Periodic Observation Report

administrator. By exploiting website vulnerabilities and so 

forth, attackers can embed mining scripts into Web pages. 

When a user views a tainted site, the user’s computer runs 

the cryptocurrency mining script, and any mined proceeds 

go to the attacker.

The above is an example of an attack aimed at clients, 

but we have also observed cryptocurrency mining attacks 

on servers. One specific example is an attack campaign*5 

called GhostMiner (Figure 1). The GhostMiner campaign 

was observed in March 2018 and exploits a vulnerability 

(CVE-2017-10271) in Oracle WebLogic Server. The vulner-

ability allows the execution of remote code, so the attacker 

ultimately attempts to get the Web server to mine crypto-

currency. We have also observed several other attempts to 

use remote code execution vulnerabilities to get servers to 

mine cryptocurrency*6*7.

Yet another example involves not mining but attempts to 

illegally transfer funds. In December 2018, we observed 

scanning activity (Figure 2) targeting the JSON-RPC pro-

tocol used in an Ethereum client*8. The scanning activity 

was looking for Ethereum clients that are accessible via the 

Internet due to a misconfiguration. We note that a number 

of conditions must be met for the funds transfer to actually 

complete successfully.

Cryptocurrencies are appealing to attackers because attacks 

on them can be monetized directly and because, depending 

on the type, they offer a high degree of anonymity. Also, 

any environment that has computational resources can be 

attacked, as evidenced by the variety of attacks geared 

to cryptocurrency mining, which target both clients and 

servers. We expect attackers to continue to target crypto-

currencies as one means of monetizing attacks.

Figure 2: Scanning of 8545/TCP (Dec. 2018)
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not be able to realize an attack of the scale envisaged. Also, 

because only a small volume of SYN packets is received per 

server, one can infer that the attacker is probably sending 

out SYN packets far and wide.

The attack described above uses port 80/TCP, and servers 

on which 80/TCP is open can generally be considered to 

be Web servers. Hence, normal Web access traffic on such 

servers do contain a small amount of SYN packets, the type 

of packet used in a SYN/ACK reflection attack, and it is 

thus difficult to determine whether any of those packets are 

being used in an attack. In this example, we detected the 

attack by cross-analyzing the multiple customer firewall logs 

present on our Data Analytics Platform.

Because firewall logs reveal information about internal and 

external access, such attacks can be detected when multi-

ple firewall logs indicate that 80/TCP responses are being 

generated for a single specific IP address (the spoofed IP ad-

dress being attacked). However, this feature could indicate 

scanning activity rather than a DDoS attack. We therefore 

1.2.2 SYN/ACK Reflection Attack

One peculiar example of a DDoS attack that the SOC ob-

served in 2018 is a SYN/ACK reflection attack using 80/

TCP. This was included in wizSafe Security Signal for 

September 2018*9 (Figure 3). The attack sends TCP SYN 

packets with a spoofed source address to many addresses 

simultaneously, thereby effectively recruiting the resulting 

SYN/ACK packet responses to perform a DDoS attack on 

the source address.

This SYN/ACK reflection attack was observed by the SOC 

on September 26, 2018, but it has also been observed on a 

small scale since October, and attacks of the same type are 

detected daily via the Data Analytics Platform. One feature 

of the DDoS attack observed on September 26 is that the 

source invokes the attack by sending a small amount of SYN 

packets to servers on which the 80/TCP port is open to the 

Internet. If an attacker sends a high volume of SYN packets 

to a single server, the administrator of the receiving server 

is liable to think that a TCP SYN flood attack*10 is underway 

and block further traffic. If this happens, the attacker may 

Figure 3: Increase in 80/TCP Traffic from a Single IP Address
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*9 wizSafe, “wizSafe Security Signal September 2018 Observation Report” (in Japanese at https://wizsafe.iij.ad.jp/2018/10/470/).

*10 In a TCP SYN flood attack, the attacker sends a large amount of SYN packets—requests used to establish a TCP connection—to the target system, causing it to 

prepare for a large number of connections and thereby wasting processing power, memory, etc.
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differentiate between DDoS attacks and scanning activity 

based on total bytes sent/received, duration, and so on as 

calculated from the firewall logs.

The SYN/ACK reflection attack that we wrote about in 

September 2018 was also observed in IIJ’s honeypots. We 

reported about this in detail in an IIJ-SECT blog post (in 

Japanese): “SYN/ACK reflection attack using IoT devices as 

a springboard”*11. The post describes changes in the ports 

used in the attack and reveals that it is a complex DDoS 

attack that uses the UDP protocol, so we encourage you to 

read through it.

1.2.3 Resurgence of Attacks Targeting Known Vulnerabilities

One notable of the 2018 analysis performed on the Data 

Analytics Platform is that some attacks targeting vulnerabili-

ties that have already been disclosed and for which patches 

have been made available have re-emerged after being dor-

mant for some time. One example is malware that exploits 

a vulnerability (CVE-2017-11822) in the Microsoft Office 

Equation Editor.

The vulnerability that the malware exploits is a buffer over-

flow issue with the Microsoft Office Equation Editor that 

allows remote code execution. Microsoft issued a patch that 

fixes this vulnerability in November 2017. As a workaround, 

users can also disable the Equation Editor as a means of 

avoiding this attack without applying the patch.

We observed an attack targeting this vulnerability via the 

Data Analytics Platform in September 2018, almost a year 

after the fix had been issued (Figure 4)*12. The attackers 

sent malware that exploits the vulnerability as an email 

attachment. We think this was a deliberate attempt to tar-

get systems in which a fix was never applied or in which 

the Equation Editor had only temporarily been disabled as 

a means of avoiding the attack, and that it was timed for 

when awareness of this vulnerability had faded somewhat.

In addition to the Microsoft Office vulnerability discussed 

here, we have observed multiple other similar cases via the 

Data Analytics Platform*13. A lesson to be learned from these 

observations is that whether one implements a fundamental 

Other     5.03%
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Figure 4: Breakdown of Malware Types Detected 
in Received Emails (Sep. 2018)

*11 IIJ-SECT Security Diary, “SYN/ACK reflection attack using IoT devices as a springboard” (in Japanese at https://sect.iij.ad.jp/d/2019/02/128021.html).

*12 wizSafe, “wizSafe Security Signal September 2018 Observation Report” (in Japanese at https://wizsafe.iij.ad.jp/2018/10/470/).

*13 wizSafe, “wizSafe Security Signal November 2017 Observation Report” (in Japanese at https://wizsafe.iij.ad.jp/2017/12/184/).
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fix to a vulnerability or, depending on the circumstances, 

any of the various workarounds available, it is crucial that 

such measures are kept in place indefinitely.

1.3 Detecting Malicious Transmissions  
 Using Machine Learning
Characteristically, the data analyzed on our Data Analytics 

Platform include only a tiny amount of abnormal traffic 

(threats) among a large amount of normal traffic. Efforts are 

being made to use machine learning to discover such threats. 

The main task handled is that of detecting anomalies from 

imbalanced data. Here, we describe two such projects that 

are underway, along with the challenges they face.

1.3.1 Application to DNS Query Data

The domain names of the C2 (command & control) servers 

used by malware may be generated algorithmically using 

a DGA (domain generation algorithm). The domain names 

generated by DGAs differ widely depending on the type of 

algorithm and the parameters used when running it. This can 

make it difficult to blacklist the malware’s servers ahead of 

time or to create an expression for the detection signature.

So in this project, we aim to solve the problem by combining 

the Data Analytics Platform’s DNS query data with machine 

learning. We take this approach because tasks that humans 

find difficult to construct rules for can be amenable to ma-

chine-learning solutions. A desirable property of machine 

learning algorithms is that they can autonomously acquire 

the ability to classify anomalies when provided with data 

containing features that are effective in identifying those 

anomalies. For example, in IIR Vol. 41, we looked at URL 

strings and described an approach to identifying rogue sites 

using neural networks*14.

We know of several attempts to use machine learning to 

detect DGAs, including some that have already been put 

into real-world use. Currently, we are engaged in research 

that follows on from the FANCI (Feature-based Automated 

NXDomain Classification and Intelligence)*15 system 

announced at USENIX Security ’18. As the conference 

paper on FANCI explains, the system combines domain fea-

tures inspired by those used in past research with a machine 

learning algorithm known as random forests, and it general-

izes very well.

As the first step in our follow-up research, we aim to stick 

to the methodology described in the paper as much as pos-

sible and use the DNS query data available from our Data 

Analytics Platform. This first step is intended to assess 

whether the methodology can be applied unmodified to the 

Data Analytics Platform’s data. We do this because any 

given methodology will not necessarily produce the same 

results when different data are used. Next, if we determine 

that the methodology cannot be applied as is, and that it is 

possible to investigate why and implement a solution, we 

intend to work toward a practical implementation that may 

include additional performance enhancements. Potential per-

formance enhancements could, for example, come from the 

use of gradient boosting decision trees, a popular method in 

recent years, or ensemble learning that combines undersam-

pling and bagging.

The volume of data passing through and processed by the 

Data Analytics Platform is large, however, so as a matter 

of practicality, the model needs to have high throughput. 

We aim to strike a balance between the increasing compu-

tational load that results from the use of more complicated 

models and workflows and the performance enhancements 

that can be obtained, and with some fine tuning, we ul-

timately aim to build the system into our Data Analytics 

Platform to provide one means of detecting these anomalies.

1.3.2 Application to Web Proxy Data

One other project we are pursuing aims to detect com-

munications sent to C2 servers by malware in Web proxy 

data. We are currently running validation tests with the 

objective of applying the methodology presented by IIJ en-

gineers at Black Hat Europe 2018*16 to our Data Analytics 

Platform’s logs. The methodology presented at Black 

*14 IIJ, Internet Infrastructure Review (IIR) Vol. 41 (https://www.iij.ad.jp/en/dev/iir/041.html).

*15 USENIX, “FANCI: Feature-based Automated NXDomain Classification and Intelligence” (https://www.usenix.org/conference/usenixsecurity18/ presentation/schuppen).

*16 Black Hat, “Deep Impact: Recognizing Unknown Malicious Activities from Zero Knowledge” (https://www.blackhat.com/eu-18/briefings/schedule/#deep-impact-rec-

ognizing-unknown-malicious-activities-from-zero-knowledge-12276).
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Hat Europe 2018 is described later in this edition under 

“Focused Research (1): Deep-Learning Analysis of Logs to 

Detect Malicious Communications”.

The project uses convolutional neural networks, which are 

commonly applied to image recognition tasks, to discern 

trends in normal traffic and anomalous traffic (with a C2 

server). The key here is learning model performance and its 

evaluation.

If there were, say, a model capable of producing 95% ac-

curacy or better, this would generally be regarded as good 

performance. But because the volume of logs collected on 

the Data Analytics Platform is enormous, 1% of this data 

is not the sort of volume that a human could process by 

eye. Even if false positives do arise, the model needs to 

provide a level of accuracy that is tolerable when put into 

operation. This, of course, is the case when only machine 

learning is used, and approaches that reduce false positives 

through non-machine-learning systematic processing are 

also conceivable.

Aside from accuracy, we also need to be aware of differ-

ences in the distributions of the datasets we are dealing 

with. It is quite possible that the distributions of datasets 

used by reportedly well-performing machine learning mod-

els presented at conferences, academic events, and the like 

are characteristically different from the dataset distributions 

encountered by our SOC, so follow-up research is needed.

In view of the above, the SOC takes the overall design and 

operation of systems that use machine learning models into 

consideration, conducting follow-up research and working 

to improve the accuracy of machine learnings models, and 

is focused on building systems that improve quality without 

putting any additional load on current security operations.

One attempt to improve accuracy entails feature engineer-

ing. There is a strong perception that feature engineering 

involves adding features expected to be effective on the 

basis of data analysis, but other approaches also exist. For 

example, various statistics can be calculated from existing 

features, combined with the data from which they were de-

rived, and then used for learning and evaluation. We will 

also use various other methods to repeatedly add and eval-

uate features as we work to enhance model.

1.4 Conclusion
In this edition, we provided an overview of analysis using 

the Data Analytics Platform, went over some actual obser-

vations from 2018, and described our efforts with respect 

to machine learning. The final machine learning approach 

that we described has the potential to further expand the 

detectable range for threats where detection with conven-

tional methods is difficult or subject to limitations. We are 

able to pursue these efforts entirely because we are able 

to use traffic logs received from customers on the Data 

Analytics Platform, subject to customer consent. Machine 

learning approaches require large volumes of data in par-

ticular, so it is fair to say that we are only able to pursue 

these efforts because we have access to these traffic logs 

via the Data Analytics Platform. We will continue to provide 

up-to-date information on threats through wizSafe Security 

Signal and the IIJ-SECT blog, and we will continue striving 

to bring about a world in which the Internet is even safer for 

customers to use.

Shun Morita

Data Analyst, Security Operations Center, Security Business Department, Advanced Security Division, IIJ

Satoshi Kobayashi

Data Analyst, Security Operations Center, Security Business Department, Advanced Security Division, IIJ
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Deep-Learning for Log Analysis 
to Detect Malicious Communications

*1 Deep Impact: Recognizing Unknown Malicious Activities from Zero Knowledge (https://www.blackhat.com/eu-18/briefings/schedule/index.html#deep-impact-rec-

ognizing-unknown-malicious-activities-from-zero-knowledge-12276).

*2 For example, IoCs may be obtained from host names discovered via anomaly detection or analysis of suspicious devices reported by users, as well as from external 

reports, etc.

2.1 Introduction
Deep learning can be used to discover malicious commu-

nications. Here, we describe two methods of detecting 

malware communications caused by malware and by exploit 

kits in the huge volumes of logs generated by commonly 

used devices such as firewalls and Web proxy servers.

This chapter is a retelling of a presentation titled “Deep 

Impact: Recognizing Unknown Malicious Activities from Zero 

Knowledge”*1 given as part of the Briefings sessions at the 

Black Hat Europe 2018 international security conference.

2.2 Background
In most cases at present, the following methods are used 

to detect malicious activities, including malware infections.

• Pattern matching (including blacklists and whitelists)

• Behavioral analysis

• Event correlation

However, sophisticated and unknown attacks can circum-

vent these solutions. And even with attacks that are not 

particularly sophisticated or unknown, detection rules for 

pattern matching, for instance, need to be changed in re-

sponse to even small changes in an attack’s pattern. This 

is because the existing detection methods are  based on 

information that an attacker can easily alter, such as the C2 

server domain name, IP address, and the executable’s bi-

nary pattern. Hence, if it is possible to use detection criteria 

that do not rely on these existing methods and that apply to 

essential aspects of an attack that are difficult for attackers 

to alter, we can combine such criteria with existing methods 

to achieve an ever greater level of security.

Some of the solutions described earlier are also very 

expensive and thus not necessarily something that all orga-

nizations can deploy. The aim of our work, therefore, was to 

develop a general-purpose solution that would enable many 

organizations to detect threats based on the logs created 

by common types of servers and network devices, such as 

Web proxy servers, routers, and firewalls, rather than spe-

cialized equipment and security devices. These logs have 

rarely been used effectively in the past, with their use being 

limited to cases such as the following.

• Anomaly detection based on communication vol-

ume, frequency, etc.

• SIEM event correlation

• Detection using IoCs (indicators of compromise) 

when they are available*2

If we can make use of these sorts of logs, which con-

sume valuable disk space, many organizations may be able 

to achieve greater levels of security without making large 

changes to network structure or additional investments.

One possible reason why these sorts of logs have not been 

put to effective use is that, although somewhat dependent 

on system and organizational scale, the logs themselves 

are very large, preventing effective analysis that involves 

high computational complexity. Deep learning, however, is 

known to be suitable for big data analysis; for example, it is 

capable of processing hundreds of millions of images each 

on the order of tens to hundreds of kilobytes in size. So if 

such logs can be optimized for deep learning, it may be pos-

sible to solve this problem.

2. Focused Research (1)

Attacker C2 server Infected device

Continually checks for 
and executes commands

Sets command(s)

Figure 1: Bot or RAT Continually Communicating 
with a Command & Control (C2) Server
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*3 Some recent malware samplesreceive sleep times from a C2 server. Only when the attacker is active, sleep times are short and communication is frequent. At other times, 

the programs sleep for long periods. These sorts of techniques can make it difficult to detect the anomalous communication based on, for example, daily average times.

2.3 Detecting Communications    
 with Malware C&C (C2) Servers
Some types of malware such as bots and RATs continu-

ally connect to their C2 servers to receive commands from 

attackers, which they then execute (Figure 1). Typically, 

they use polling intervals that range from several dozen sec-

onds to several minutes or so. The longer the interval, the 

longer the program waits for any single command, which 

makes it difficult for the attacker to take action. Conversely, 

the shorter the interval, the easier it is for the attacker to 

act, but the easier defenders can detect the activity, since 

the activity will appear toward the top in a simple analysis 

of communication frequency broken down by destination 

hosts*3. What this boils down to is that adjusting the fre-

quency of communication presents both an important task 

and a tough decision for the attacker. Meanwhile, when 

ordinary users within an organization communicate with 

external networks, such as when accessing the Web, it is 

rare for those communications to occur frequently or persist 

over a long time. Figure 2 illustrates what communication 

frequency looks like over the course of an hour when a 

user accesses harmless Web servers (left) and when mal-

ware is continually communicating with a C2 server (right). 

Different communication patterns almost always arise, so 

we thought that if our system could learn the differences, 

it would be able to detect malware communications. This 

method does not rely on DNS name, IP address, URL, and 

the like, so it should detect malware that existing detection 

methods miss.

Here, we divide the logs up by client and server and count 

communications in 1-minute buckets for each 1-hour pe-

riod. We thus convert the logs into pseudo 60-dot images 

on which we perform image recognition using CNNs (con-

volution neural networks), a class of neural network used 

in deep learning. It is known that, depending on the model 

used, CNNs can outperform human recognition accuracy, 

and we therefore transform the logs into images and use 

this class of network in the hopes that this will prove more 

effective than other deep learning models.

Our training dataset is constructed as follows. We use 1.5 

million “images” created from Web proxy logs as our benign 

sample set. For our malicious samples, we use no actual 

(in-the-wild) malware communication patterns and instead 

emulate patterns of periodic communications. With this 

approach, simply by generating a range of conceivable ma-

licious patterns and training our model on them, we should 

be able to detect malware even for which no real-world sam-

ples are available. This is what we mean by the term “zero 

0

10

20

30

40

50

9

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

2

0

0

0

0

0

0

3

0

8

0

0

0

0

4

0

1

0

0

0

0

5

0

0

0

0

0

0

6

0

0

0

0

0

0

7

0

0

0

0

0

0

8

0

0

0

0

0

0

9

(1) To a legitimate Web server

0

10

20

30

40

50

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

2

0

0

0

0

0

0

3

1

1

1

1

1

1

4

0

0

0

0

0

0

5

1

1

1

1

1

1

6

0

0

0

0

0

0

7

1

1

1

1

1

1

8

0

0

0

0

0

0

9

(2) To a C2 server

(min.)(min.)

Figure 2: Illustration of Communication with a Legitimate Web Server (left) and Continual Communication with a C2 Server (right)
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*4 Simple Black-Box Adversarial Perturbations for Deep Networks (https://arxiv.org/abs/1612.06299).

*5 We do not obtain patterns simply by acquiring and running malware samples in a closed environment; instead, we use patterns obtained from actual incidents in 

which malware was connected to a C2 server. This is because the sleep times observed when malware is connected to an in-the-wild C2 server may differ from 

those observed when it is simply run in a closed environment (see footnote *3).

knowledge” in the subtitle of our Black Hat presentation. 

We emulate patterns for a wide range of intervals, from 3 

seconds up to 12 minutes (Figure 3). As a special case, we 

also generate patterns that include sleeps of several minutes 

following several minutes of continuous activity (Figure 4). 

Additionally, to account for patterns that differ only slightly 

from the ones we have come up with and to better resist 

CNN attacks*4, we also (a) apply rotations that shift each dot 

in the generated patterns along a number of intervals and (b) 

randomly set existing values to zero. We thus generate a total 

of around one million patterns.

Moving on to our test dataset, we use around 4.5 million im-

ages constructed from Web proxy logs (in the same manner 

as for our training dataset) as our benign samples. For our 

malicious samples, we use images constructed from logs of 

malware communications taken from in-the-wild incidents to 

see if our system can detect these. Our investigation covers 

the following malware families*5.

• PlugX

• Asruex

• xxmm

• himawari/ReadLeaves

• ChChes

• Elirks

• Logedrut

• ursnif/gozi

• Shiz/Shifu

• Vawtrak

• KINS

Using the model we built, we were able to detect all of these 

malware families. And as shown below, the rates of false 

Figure 4: Emulation of Malicious Communications (2)
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Figure 3: Emulation of Malicious Communications
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positives for our benign samples were also low. So we be-

lieve our system will be effective if we filter out these FQDNs 

using a whitelist.

• Benign sample set 1

Accuracy: 1,565,139/1,566,109 (99.94%)

False positive FQDNs: 64/246,190

• Benign sample set 2

Accuracy: 1,540,419/1,541,050 (99.96%)

False positive FQDNs: 72/243,106

• Benign sample set 3

Accuracy: 1,528,936/1,529,617 (99.96%)

False positive FQDNs: 65/243,185

That said, it is conceivable that Web pages that frequently 

reload, such as Web mail interfaces and sports sites, could 

register as false positives. So to reduce false positives when 

the system is in operation, we can take steps like excluding 

such sites by whitelisting them or regarding communication 

with a Web server as legitimate when alerts from many 

users are raised for that same destination.

Figures 5–9 show examples of communication patterns suc-

cessfully detected from actual malware communications. It 

is evident that communications from the actual samples are 

not perfectly periodic, but the system takes the differences in 

stride and detects the patterns using deep learning. Logedrut 

Figure 8: Logedrug Communication Pattern Figure 9: Vawtrak Communication Pattern

Figure 6: Asruex Communication Pattern

Figure 5: PlugX Communication Pattern

Figure 7: Elirks Communication Pattern
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For space reasons, we do not show all malware families and 

model details here. Further details can be found in our slides*1 

on the Black Hat Europe 2018 website. Since we are not 

building complicated models here, we believe the models can 

be trained on CPU-based systems.

(Figure 8) communicates infrequently, only once every 12 

minutes, but it was still detected as being distinct from the 

benign sample. In the case of Vawtrak (Figure 9), no com-

munications occur in the final 16 minutes, but the system 

detects the malware in cases like these as well.

.EXE

ek.example.com

.HTML

1. Landing

.SWF

2. Exploit 3. Malware

URL path & 
parameters

Substance Content-Type

text/html /sm/Landing 
page

URL path & 
parameters

Substance Content-type 

application/x-javascript /sm/swfobject.jsFlash loader 
script 

URL path & 
parameters

Substance Content-Type

text/htmlIE Exploit /sm/main.html

URL path & 
parameters

Substance Content-Type

application/java-archiveJava Exploit /sm/NeIsFp.jar

URL path & 
parameters

Substance Content-Type

application/octet-streamMalware /dwm.exe

URL path & parametersSubstance Content-Type

Landing page text/html /?
NTI0OTU5&RCDUIv&oJhtJNm=dGFraW5n&wouMDc=Y2FwaXRhbA==&JgtXjOEttIAHrI=Y2FwaXRhbA==&TKCcodYFxdiy=d
Ghpbmdz&tNDodvGjF=Y2FwaXRhbA==&pHtonQrvp=bG9jYXRlZA==&kl345dfdfg234fsd=UDQTpjkGELQNmyN9ZAF1G9P2s
3EeBzhWZiMHT-RTZZA4QrZSQR7Rt3VzyxrckQPskg1TH6mI&pWjLlCBUIUSRIw=Y2FwaXRhbA==&nR45dsgd54lsCs=xXrQ
MvWfbRXQDJ3EKvjcT6NAMVHRGUCL2YqdmrHXefjaf1WkzrfFTF_3ozKATASG6_ZtdfJ

URL path & parametersSubstance Content-Type 

Malware application/x-msdownload /?
MjEwNzA1&mTONXmiGJttk&nR45dsgd54lsCs=wXrQMvXcJwDQDobGMvrESLtGNknQA0KK2Iv2_dqyEoH9fWnihNzUSkr16
B2aCm3W&UEiQzsUEYQeeS=Y2FwaXRhbA==&jeeGWAgbhZSFoHh=bG9jYXRlZA==&KRssZN=bG9jYXRlZA==&BWeciQa
XKEgAey=bG9jYXRlZA==&SOymAmL=cG9wdWxhcg==&uLNyyCiGt=cG9wdWxhcg==&wlNBeZFOQXgP=dW5rbm93bg==&
kl345dfdfg234fsd=_fcpKeRXaVKziULVLwczyIlbUVJFpqj6i0SAmxDPhcGD_hKEUQ1M-5KREYFmmF7F

URL path & parametersSubstance Content-Type

Flash Exploit application/x-shockwave-flash /?
NTQ0NjEw&zWuWFX&lskPeVWn=dW5rbm93bg==&NCDmQdmxCxapA=dW5rbm93bg==&eLCxfNVxDhHqBH=Y29uc2lkZXI
=&nzZHzkCNdL=cmVwb3J0&HZELKhjPUenym=cG9wdWxhcg==&nR45dsgd54lsCs=wnrQMvXcKxXQFYbDKuXDSKZDKU7
WG0aVw4-dhMG3YpjNfynz1ezURnL1tASVVFiRrbMdKL&kl345dfdfg234fsd=VYOQfk20LUKgEzm9sJVFhBo66tjUmDmBCd1
JLX-UeLMg9DqZOSHbIL0Vz0zLMRQIgigECy&rZpDUeqxIDnMQL=bG9jYXRlZA==&LENxPZQZ=cmVwb3J0

Figure 11: Example of Rig Exploit Kit’s Content-Type Sequence

Figure 10: Sequence of Content-Types Sent by an Exploit Kit Server

Figure 12: Example of KaiXin Exploit Kit’s Content-Type Sequence
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2.4 Exploit Kit Detection
When a PC accessing the Web is redirected to an exploit 

kit, the exploit kit server sends content in the order shown 

in Figure 10.

1.Landing page: Identifies the PC’s Web browser environ-

ment and loads the next stage of exploit content. May 

also include an exploit(s) for the browser itself. The 

Content-Type is text/html.

2.Exploit content: Content file containing exploit(s) for 

the browser and its plug-ins. Content-Types include ap-

plication/x-shockwave-flash, application/x-java-archive, 

application/x-silverlight-app, application/pdf.

3.Malware: If the previous stage’s exploit(s) succeeds, 

malware that infects the PC itself is loaded. In most 

cases, the Content-Type is application/octet-stream or 

application/x-msdownload.

Figures 11 and 12 show examples of the Content-Type 

sequences when, respectively, Rig Exploit Kit and KaiXin 

Exploit Kit are observed. The figures show that their 

Content-Type transitions are indeed as described above.

On the other hand, we can think of almost no cases in 

which normal Web browsing would produce these sorts of 

sequences in Content-Type sent by a server. In large-scale 

Web services, for example, dedicated servers are typically 

set up to handle each Content-Type, so content that is sub-

ject to exploits, such as Flash and Java, and HTML content 

like landing pages tend to come from different servers, as 

shown in Figure 13. And in cases where a single server 

hosts all of a service’s content, data like images and CSS, 

which recent exploit kits do not use all that much, come 

from the same server, as shown in Figure 14.

.HTML .JS .CSS .HTML .CSS .HTML .SWF .JPG .PNG

www.example.org

.PNG .JPG .SWF .PNG .SWF .JPG .PNG

.HTML .CSS .CSS .JS .HTML .CSS .JS

img.example.com

static.example.com

Figure 13: Example Content-Type Sequences for a Web Service with Separate Servers for Content-Types

Figure 14: Example Content-Type Sequence for a Service Hosted on a Single Web Server
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*6 To be precise, we split log lines up according to client PC – destination server pairs, and then further split them into Web browser sessions (being the series of 

requests and responses caused by a Web browser in order to display the Web page at a given URL). The Web proxy logs we used have each Web browser session 

recorded separately. In more common environments, it is possible to split up Web proxy logs according to fields such as the timestamp.

*7 With the exploit kits we have observed recently, in almost no cases is content sent by the server more than five times. However, if such cases were to rise in 

future, we think the upper limit would need to be raised.

Given the above, we thought that if analysis of Web proxy 

logs could differentiate between the sequences for exploit 

kit servers and the sequences for normal Web server con-

nections, it might be possible to detect exploit kits without 

relying on techniques like pattern matching. The Content-

Type sequences peculiar to the exploit kits mentioned above 

are strongly related to the fundamental functions by which 

exploit kits force a Web browser to run exploits and infect 

a PC with malware. We should, therefore, be able to detect 

unknown exploit kits that operate in a similar manner. For the 

same reason, it should not be easy for an exploit kit author to 

evade detection by altering the sequence.

To differentiate between sequences, we use a class of neu-

ral networks called RNNs (recurrent neural network), which 

are used in natural language processing and the processing 

of time-series data such as video and audio streams. So first, 

we need to convert the Web proxy logs into a form that an 

RNN model can process. We split the logs into individual 

client PC – destination server pairs and convert series of 

requests and responses into sequences*6. To improve noise 

tolerance, we eliminate duplicate Content-Types from within 

each sequence. We also limit sequences to a length of five*7, 

deleting any lines beyond that. Finally, we convert each line 

in the sequence to an 84-dimension vector. The first 83 

slots in the vector represent the Content-Type in one-hot 

encoding, and the final slot is a flag indicating whether the 

referer and request URL contain the same domain name.

Our training dataset comprises a benign sample of around 

580,000 sequences constructed from some 3.9 million lines 

from Web proxy logs, and a malicious sample of around 

300,000 sequences designed to emulate conceivable ex-

ploit kit patterns. Instead of using patterns observed in the 

wild for our malicious sample, we generate a comprehensive 

range of patterns representing content sequences that could 

conceivably be produced by exploit kits. Figure 15 shows 

examples of such  pseudo-sequences. Our sample includes 

.HTML .JS .SWF

.SWF

.JAR DATA

.SWF

C Multiple exploit content downloaded

.HTMLD Exploit unsuccessful, no malware loaded

.HTML .EXE .SWF .EXEB Exploits succeed multiple times
 (exploit in landing page and separately loaded Flash exploit)

.HTML DATAA Typical sequence for recent exploit kits

Figure 15: Examples of Generated Pseudo-sequences for Exploit Kits
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sequences that represent cases where several types of ex-

ploit content are loaded, cases where an exploit succeeds 

multiple times in a row, and cases where the exploit is un-

successful and no malware download takes place.

To test our model, we used a malicious sample constructed 

from actual communication data for the following 14 exploit 

kits, and a benign sample of around 1.7 million sequences 

constructed from Web proxy logs for a time period that dif-

fers from that of the training set.

• Rig

• Nebula 

• Terror 

• Sundown 

• KaiXin 

• Neutrino 

• Angler 

• Nuclear 

• Magnitude 

• Fiesta 

• Sweet Orange 

• Goon 

• Infinity 

• Astrum

The model we built was able to detect all of the exploit kits 

listed above. And as shown below, false positive rates for 

our benign samples were also relatively low.

• Benign sample set 1

Sequences: 562,390

False positives: 642

Accuracy: 0.9988

• Benign sample set 2

Sequences: 574,452

False positives: 681

Accuracy: 0.9988

• Benign sample set 3

Sequences: 576,294

False positives: 639

Accuracy: 0.9988

We have confirmed that using a whitelist of around 15 lines 

can halve the number of false positives listed above. When 

applying a system like ours to production environments, we 

would recommend combining it with other methods to nar-

row down the alerts, such as whitelists, host reputation, 

anomaly detection, and automated sandbox analysis.

Our slides*1 available on the Black Hat Europe 2018 website 

also present a method of identifying Rig Exploit Kit from 

Web proxy logs using an MLP (multilayer perceptron) model. 

This method focuses on features of individual exploit kits’ 

URLs, so while it is not suited to detecting unknown exploit 

kits, it is useful for identifying known exploit kits and track-

ing their variants. Using it with the RNN-based exploit kit 

detection method described here can improve the accuracy 

of detection of known exploit kits.

Hisao Nashiwa

Threat Analyst, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
Mr. Nashiwa is a member of IIJ-SECT, which is IIJ’s private CSIRT.
His work includes incident response, malware analysis and network traffic analysis, and he has thus been investigating malicious activities 
over nine years. He has been researching cyber crimes such as those involving exploit kits and malware for many years and has expertise 
in malware analysis. He is a frequent conference speaker and has given talks and hands-on training sessions multiple times at international 
conferences such as Black Hat and FIRST TC.

Hiroshi Suzuki

Malware & Forensic Analyst, Office of Emergency Response and Clearinghouse for Security Information, Advanced Security Division, IIJ
As a member of IIJ-SECT, Mr. Suzuki is a malware analyst and a forensic investigator. He has dedicated over 13 years to the areas. As a 
frequent speaker and trainer for international conferences, he has given presentations and trainings at Black Hat (USA, Europe and Asia) and 
FIRST TC multiple times.
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Designing a Large-scale Email System

3. Focused Research (2)

3.1 Introduction
In April 2017, we conducted a full system overhaul for IIJ 

Secure MX Service (SMX), which was launched in October 

2006. The SMX service’s primary focus is on providing 

email gateway functionality. Before customers’ systems 

receive emails, the emails first pass through IIJ’s email 

servers, where email-borne threats are filtered out using a 

variety of technologies, including virus filtering, spam fil-

tering, sender authentication filtering, backscatter filtering, 

and sandbox filtering. The safe emails are then delivered to 

customers’ email systems.

Over 10 years have passed since launch, and the landscape 

for emails services has changed substantially over that time, 

in terms of the volume and size of emails that pass through 

as well as other factors, from server specs through to email 

system requirements. SMX has seen system expansions 

on top of expansions to cope with those changes and thus 

now has a vastly different makeup from the system that it 

started out as. In many cases, however, fundamental as-

pects of system architecture can be traced all the way back 

to launch, and we have thus felt for quite a while now that 

the system has its limitations.

In our recent overhaul, therefore, we revised the entire 

system from the architecture up. This report describes the 

design of the SMX email system, particularly its delivery 

system, along with some background to the revisions.

3.2 Challenges and Goals of the System Overhaul
To begin with, we set a number of goals in view of issues 

with the old delivery system.

3.2.1 Review of the Architecture

The first goal was to revise the old architecture, which had 

been expanded excessively. Classic large-scale email sys-

tems commonly use architectures that line up simple mail 

servers (message transfer agent, MTA) in series as shown 

in Figure 1. Pre-overhaul, SMX’s delivery system also used 

a similar architecture.

The biggest benefit of multistage MTA architectures like this 

is the high extensibility. Delivery system functionality can be 

expanded easily by linking in MTAs with the desired addi-

tional functionality. Also, because the MTAs are connected 

via SMTP, the standard protocol for email transmissions, 

linking in products from different vendors does not raise any 

concerns in terms of interface compatibility, and it is gen-

erally rare for product mixing and matching to cause any 

problems.

This method of expanding a system, however, comes with 

side effects and should thus not be overdone. The biggest 

side effect of concern is the increases in storage I/O and 

operating costs associated with adding more MTAs. In 

multistage MTA delivery systems, received data is written 

to storage every time an email passes through an MTA, 

Figure 1: Architecture of a Classical Email System

Relay Relay Relay

Mailbox

Customer email system
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MTA

Sender 
authentication

MTA
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resulting in storage I/O volumes several times that of the 

email size. Emails with virtually the same content are writ-

ten to storage over and over, so taken as a whole, this 

sort of delivery system architecture results in a plethora of 

unnecessary storage I/O operations. When network storage 

solutions such as NAS and SAN are included, these I/O op-

erations alone put a strain on the storage network, creating 

a bottleneck for the delivery system as a whole. Not only 

was storage a bottleneck for the old SMX delivery system, 

the system was also unable to take full advantage of ad-

vances in hardware speed and capacity because CPU and 

memory resources were being left idle.

Also, lining up different MTAs in series means filling the 

delivery system with a mix of various MTAs that operate in 

different ways. Not only does this increase the knowledge 

required—in terms of, e.g., how to view the logs, perform 

tasks, and deal with problems, and the build procedures to 

follow when expanding the delivery system—each MTA can 

also create forks in the delivery route, send out notification 

emails, and so on, which complicates the flow of emails 

within the delivery system and makes it tough to understand 

the delivery system as a whole.

With SMX, the delivery system was repeatedly expanded 

as scale increased, making for a complicated and expensive 

delivery system, further expansion of which had become 

difficult.

3.2.2 Better Filtering

The second goal was to improve the accuracy of virus filter-

ing (antivirus) and spam filtering (antispam). Antivirus and 

antispam functions are crucial and constitute the dual cen-

terpiece of email security services.

While many security vendors provide both antivirus and anti-

spam services and products, the security industry is subject 

to rapid change; new attack methods constantly arise, and 

vendors are constantly developing new technologies to 

counter them. What this means is that Vendor A’s product 

may offer high detection accuracy on one day, while Vendor 

B’s service may offer high detection accuracy on another, 

and then the situation may suddenly change when Vendor 

C releases a new product offering superb accuracy. Put dif-

ferently, this also means that sticking with any one vendor’s 

engine comes with the risk of declining detection accuracy 

as the technology used by the engine becomes obsolete. In 

view of this, we felt we needed a mechanism for keeping 

virus and spam email detection accuracy high.

3.2.3 Avoiding Over-reliance on Any One Vendor

The third goal was to avoid over-reliance on any specific 

vendor. To provide a wide range of functionality, the SMX 

system incorporates numerous vendor products and ser-

vices. Although many of the products and services offered 

are appealing, to avoid vendor lock-in, we felt we needed to 

retain control over how reliant we are on any single offering.
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processing tasks, making it possible to more efficiently use 

CPU resources across the entire delivery system (Figure 3).

Because SMX employs multiple antivirus and antispam 

engines, the single-stage MTA architecture requires sev-

eral engines to be loaded into any one server’s memory. 

In general, antivirus and antispam engines hold a lot of 

data in memory and thus tend to consume a lot of mem-

ory resources. Loading several such engines into memory 

necessitates the sort of total memory capacity that older 

servers could not accommodate, but the increasingly high 

performance of commodity server hardware , as mentioned 

above, has made this sort of setup possible.

3.4 Making Antivirus/Antispam   
 Engines Interchangeable
Next, we designed the overall system to allow the antivirus 

and antispam engines to be replaceable at any time.

IIJ does not develop antivirus or antispam engines in-house 

but instead provides this functionality by incorporating such 

engines from security vendors into the delivery system. 

This means that IIJ cannot directly address any problems 

that arise with detection accuracy. Taking the opposite 

perspective, however, by taking advantage of the ability to 

cut obsolete technology loose and swiftly incorporate fresh 

technology, we aimed to design a system that is not tightly 

tied to any specific antivirus or antispam engine.

First, we evaluated the antivirus and antispam engines of 

each security vendor. We ran scans for viruses and spam 

on emails received by honeypots run by IIJ, accumulating 

It is not uncommon, particularly among foreign vendors, 

for a company to be suddenly bought out by a competi-

tor, resulting in its products and services being terminated. 

Suddenly eliminating the ability to use a product has no 

small impact on customers who incorporate it into their sys-

tems. Although we cannot reduce the impact of this to zero, 

we do need to take steps to minimize it.

3.3 Single-stage MTA for Effective Use   
 of Hardware Resources
In overhauling the delivery system in line with the above 

goals, we first sought to harness the plentiful CPU and 

memory resources afforded by the increasingly high perfor-

mance of commodity server hardware and to reduce storage 

I/O, which was a bottleneck for the system overall as well 

as a factor in costs.

The architecture we arrived at is the polar opposite of the 

previous one. In short, all processing will be completed 

within a single, multifunctional MTA, with this single-stage 

setup eliminating the unnecessary relaying of emails be-

tween MTAs (Figure 2). With this architecture, email is 

only written to storage once, so storage I/O operations are 

greatly reduced compared with the old delivery system, 

which wrote the same content to storage multiple times.

Also in the old delivery system, the storage I/O bottleneck 

meant that the CPU resources of most servers were left idle 

while CPU utilization rates were high on only some serv-

ers, where high-CPU-load tasks such as virus scans were 

being run. By using identically configured MTAs in parallel, 

previously idle CPU resources can be diverted for high-load 

Figure 2: Architecture of the Overhauled Email System

Mailbox

Customer email system

Internet

MTA

Sender authentication

Antivirus

Antispam

Sandbox

20



3. Focused Research (2)

Vol. 42May 2019

© Internet Initiative Japan Inc.

statistics on detection performance over several months to 

facilitate comparisons. Virus and spam emails can exhibit ep-

idemic-like qualities, so any evaluation of countermeasures 

over short periods can be heavily influenced by detection 

performance with respect to whatever spam campaign*1 hap-

pened to be active at the time, and thus may not provide a 

proper idea of long-term detection performance. This is why 

we used a fairly long validation period. During the validation 

period, we received product guidance from a range of se-

curity vendors. The approaches taken for antispam engines, 

in particular, are quite distinct across the different products 

available, and the results of our validation exercise are very 

interesting in that they reflect the differences in approach. It 

was an arduous process, but it gave us an understanding of 

the detection accuracy and tendencies of each engine.

To achieve enhanced detection accuracy, we combine, re-

spectively, multiple antivirus engines and multiple antispam 

engines. We then combine the results given by each to ar-

rive at the final detection results.

It is evident from the results of this validation process, and 

also simply from intuition gained through day-to-day oper-

ations, that no single engine is an out-and-out winner in 

terms of how long it takes to detect virus and spam emails 

after they begin to circulate. Engine A may be quicker to 

detect such emails during one campaign, while Engine B 

may be quicker during another, and so on. Combining mul-

tiple engines enables us to reduce detection misses during 

the early stages of a campaign. In the case of antispam 

engines, in particular, we combine engines that use different 

approaches so that the weaknesses of any one engine are 

compensated for by other engines.

Our main aim in combining multiple engines was to improve 

detection accuracy, but it also had secondary effects. One 

is the reduction of scan errors. It is not uncommon for virus 

and spam scans to fail to complete successfully because of 

corrupted email headers/attachments or deliberate content 

manipulation, for instance. Running scans with multiple en-

gines makes it possible to significantly reduce the number 

of emails that cannot be scanned at all. Also, in rare cases, 

antivirus engines and antispam engines can crash when 

scanning specific emails or attachments. In such cases, you 

have the option of disconnecting the engine experiencing 

the problem as an emergency measure to allow emails to 

actually make it through the system. It also makes it possi-

ble to minimize the impact of a security vendor being bought 

out and its products becoming unavailable.

Figure 3: Effective Use of Hardware Resources

*1 Mass mailout of identical or similar spam emails.
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3.5 Decision to Develop MTA In-house
The biggest problem we had when overhauling the delivery 

system was how to implement this design. This is what 

prompted our decision to develop the MTA in-house, but 

other methods were available to us, such as combining open 

source MTAs like Postfix and Sendmail, or the use of MTAs 

made by MTA vendors.

Postfix and Sendmail provide an interface called Milter, 

which provides advanced functionality and makes it possible 

to easily and safely implement email control and rewrite ca-

pabilities. On the other hand, given the architecture, adding 

Milter onto the system would result in a large I/O overhead 

in particular. And we also had to admit that it lacks the func-

tionality for realizing a complex system like SMX. Although 

one idea could be to modify Postfix or Sendmail directly, the 

cost of keeping up with updates to the official package is far 

greater than you might imagine.

The option of adopting a vendor-produced MTA seemed 

like a very realistic one. Several MTA vendors develop MTA 

products for ISPs and large-scale senders. In these products 

as well, the idea of performing all processing in a single 

stage, as described above, is the mainstream approach. 

They also allow various security vendors’ antivirus and an-

tispam engines to be swapped in and out, and they allow 

flexible, extremely fine-grained customizations that meet 

the detailed requirements of large-scale delivery systems, 

and as such, MTAs from vendors are far more versatile 

and powerful than the open-source offerings. For us, this 

would have been the quickest and easiest way of creating 

the delivery system we had in mind. Indeed, many ISPs and 

large-scale senders use vendor MTAs, and parts of SMX’s 

old delivery system also incorporated vendor MTAs.

The only, and biggest, concern we had with taking on a 

vendor MTA was that SMX would become one with that 

particular MTA. In a single-stage MTA architecture, the 

MTA itself is the delivery system. And the entire system 

beyond the delivery system, from the service specifications 

through to the operation procedures, would depend heavily 

on the MTA. In other words, what the MTA can do, SMX 

can do; and vice versa.

IIJ continues to actively expand SMX’s functionality with a 

close eye not only on customer feedback but also on the lat-

est trends in the email and security industries. So the SMX 

delivery system may at times require functionality that other 

operators do not require. In such situations, getting a ven-

dor to add features that an MTA lacks is generally difficult. 

MTA vendors serve many customers, so they will inevitably 

put priority on developing functionality that many custom-

ers require, and on functionality that key customers want. 

Developing highly idiosyncratic and niche functionality will 

naturally be of low priority. Vendor MTAs would appear to 

be suitable when the required specifications are clear and 

when few specification changes are likely occur in future, 

but whether such offerings could support our proactive ap-

proach to expanding SMX is an unclear.

Vendor MTAs also come with the risk of the vendor being 

bought out. Because the system as a whole is heavily reliant 

on the MTA, were such a corporate acquisition to occur, 

the impact would be immense relative to any impact that 

might result in relation to the antivirus and antispam en-

gines. Indeed, several acquisitions involving MTA vendors 

and products have taken place in the past few years. In 

absolute terms, not many vendors develop MTAs, so in per-

centage terms, this is a risk that cannot be ignored.

The final option is in-house development, but this is also 

not an easy option. MTAs that support the huge levels of 

communication flows seen at the ISP level require extremely 

high levels of stability, robustness, and performance. Such a 

system would also need to provide the diverse functionality 

and flexibility of a system like SMX. And the technical capa-

bilities to support future expansions in functionality would 

also be needed.

The decision to develop such an MTA from scratch in-house 

is perhaps not a very easy one. IIJ, however, does have 

experience and knowhow in developing many email system 

components itself. It also has a battery of reliable develop-

ment teams, and this is why we were able to pull the trigger 

on developing our system in-house—the risk was high, but 

we also saw that we had much to gain.
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3.6 Overhaul Outcomes
3.6.1 Achieving our Development Goals

The overhaul project encompassed the entire system, in-

cluding the MTA component. More than a full year passed 

before the first release was out. It was the biggest develop-

ment project I have ever been part of.

A lengthy development period and repeated testing were 

needed to complete the system, but ultimately it met all of 

the goals we set. Our flexible, versatile MTA made it pos-

sible to create a delivery system with a single-stage MTA 

architecture. In accord with our design, we reduced stor-

age I/O operations, which had been an issue with the old 

system, thereby enhancing the performance of the deliv-

ery system overall. Major reviews of the virus filters and 

spam filters also resulted in improved detection accuracy. 

And constantly keeping an eye on the detection rates of 

each engine we use has also enabled us to take swift action 

whenever detection rates change.

Developing an MTA in-house has freed us from the risk of 

MTA vendors being acquired, and it has also enabled us to 

minimize the effect of security vendors being acquired be-

cause we are now able to swap engines in and out. Although 

perhaps quite obvious, I think the most important outcome 

of this system overhaul is that we have laid foundations 

that will enable IIJ to run its own services as it sees fit, es-

sentially immune to the vicissitudes of vendor acquisitions.

3.6.2 Secondary Benefits

We also realized some secondary benefits beyond the goals 

that we originally set.

First, troubleshooting speed improved. When problems occur 

with a vendor MTA, details of the condition are reported to 

the vendor and a fix requested. But if it is unclear how to 

reproduce the problem, or if the details cannot be passed to 

the vendor because they contain customer data, then it may 

take considerable time for the vendor to confirm the problem 

or, as is often the case, the vendor may be unable to ascer-

tain what the problem is at all. With in-house development, 

however, the operations and development teams can work 

closely with one another. This means that the root cause 

of any problems, in particular, can be identified extremely 

quickly, and proper provisional and permanent responses 

implemented.

Also, and while this is not something that affords direct com-

parisons, I feel that developing the system in-house resulted 

in strong motivation levels for the team. When developing a 

system that incorporates MTAs or other products from ven-

dors, the development team develops ways of interfacing 

with those vendor products, but this frequently involves a 

seemingly futile struggle against unclear product specifica-

tions and is often not much fun on a personal level. In-house 

development, on the other hand, entails a far, far greater 

amount of work, and we were concerned about the bur-

den this would place on the development team. Yet, while 

the team was certainly busy, I never felt an atmosphere of 

fatigue or exhaustion setting in. In the end, I think there is 

something exciting about building a large-scale system on 

your own and seeing it gradually come together.

We released the new system in April 2017, and we spent 

a full year migrating over to it from the old one. We have 

received various opinions and requests since release, 

prompting us to add functions and fix issues, and I think 

we have been able to so swiftly make these improvements 

precisely because we developed the system in-house.

I would note that my intention is not to criticize systems 

that use vendor products across the board. Both approaches 

have their advantages and disadvantages, so you need to 

select the right balance depending on the situation. Finally, 

I would also note that SMX incorporates many vendor prod-

ucts, including some from foreign vendors, into its system, 

and we work closely with vendors on a daily basis as we 

provide our services to customers.

Here, I have described the design of the SMX delivery sys-

tem. With its newly acquired architecture, we will continue 

to evolve the SMX service going forward.

Takahiko Suzuki

Senior Engineer, Service Development Section, Application Service Department, Network Division, IIJ
Since joining IIJ in 2004, Mr. Suzuki has continued to work on email service development.
He is the developer of yenma, an open-source sender authentication filtering program.
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other public offices and financial institutions.
In addition, IIJ actively shares knowledge accumulated through 
service development and Internet backbone operation, and 
is making efforts to expand the Internet used as a social 
infrastructure.  

The copyright of this document remains in Internet Initiative Japan Inc.

(“IIJ”) and the document is protected under the Copyright Law of Japan 

and treaty provisions. You are prohibited to reproduce, modify, or make 

the public transmission of or otherwise whole or a part of this document 

without IIJ’s prior written permission. Although the content of this 

document is paid careful attention to, IIJ does not warrant the accuracy and 

usefulness of the information in this document.
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